

1 The ICON-based Earth System Model for Climate

2 Predictions and Projections (ICON XPP v1.0)

- 3 Wolfgang A. Müller¹, Stephan Lorenz¹, Trang V. Pham², Andrea Schneidereit², Renate
- 4 Brokopf¹, Victor Brovkin^{1,6}, Nils Brüggemann¹, Fatemeh Chegini¹, Dietmar Dommenget³,
- 5 Kristina Fröhlich², Barbara Früh², Veronika Gayler¹, Helmuth Haak¹, Stefan Hagemann⁴,
- 6 Moritz Hanke⁵, Tatiana Ilyina⁶, Johann Jungclaus¹, Martin Köhler², Peter Korn¹, Luis
- 7 Kornblueh¹, Clarissa A. Kroll⁷, Julian Krüger¹, Karel Castro-Morales², Ulrike Niemeier¹,
- 8 Holger Pohlmann¹, Iuliia Polkova², Roland Potthast², Thomas Riddick¹, Manuel Schlund⁸,
- 9 Tobias Stacke¹, Roland Wirth², Dakuan Yu¹, and Jochem Marotzke¹
- 12 ¹ Max-Planck Institute for Meteorology, Hamburg, Germany
- 13 ² Deutscher Wetterdienst, Offenbach am Main, Germany
- 14 ³ ARC Centre of Excellence for Climate Extremes, Monash University, Australia
- 15 ⁴ Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- ⁵ Deutsches Klimarechenzentrum, Hamburg, Germany
- 17 ⁶ University of Hamburg, Hamburg, Germany
- 18 ⁷ ETH Zürich, Zürich, Switzerland
- 19 ⁸Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre,
- 20 Oberpfaffenhofen, Germany

24 Corresponding author: Wolfgang A. Müller, wolfgang.mueller@mpimet.mpg.de

26

25

21

22

23

10

Abstract. We develop a new Earth System model configuration framed into the ICON 27 28 architecture, which provides the baseline for the next generation of climate predictions and 29 projections (hereafter ICON XPP - where XPP stands for eXtended Predictions and 30 Projections). ICON XPP is an outcome of a joint project between climate research institutes 31 and the Deutscher Wetterdienst, integrating numerical weather prediction and Earth System 32 modeling and prediction based on the ICON framework. ICON XPP comprises the atmospheric 33 component as used for the numerical weather prediction (ICON NWP), the ICON ocean and 34 land surface components, and an ensemble-variational data assimilation system, all adjusted to 35 an Earth System model for pursuing climate research and operational climate forecasting. Here, 36 two baseline configurations are presented, one with a 160 km atmosphere and a 40 km ocean 37 resolution, and one with 80 km atmosphere and 20 km ocean resolution, and a first evaluation 38 is pursued based on the CMIP DECK (Diagnostic, Evaluation and Characterization of Klima) 39 experimentation framework. Emphasis is given to the basic assessment of their mean climate, 40 trends and climate sensitivity, and key processes in the tropics and mid-latitudes are examined, 41 which are of relevance for climate predictions. 42 ICON XPP is able to depict the basic properties of the coupled climate. The pre-industrial 43 climate shows a balanced radiation budget at the top-of-atmosphere and a mean global near-44 surface temperature of about 13.8-14 °C. The ocean shows circulation strengths in the range of 45 the observed values, such as the AMOC at 16-18 Sv and the flows through the common 46 passages. The current climate is characterized by a trend in the global mean temperature of 47 ~1.2 °C since the 1850s, close to what is found in reference datasets. At regional scale, 48 however, the hydroclimate deviates strongly from observed conditions. For example, the inter-49 tropical convergence zone (ITCZ) is dominated by a double peak with a particular wet southern 50 subtropical branch over the oceans. Further, the climate in the Southern Ocean is characterized 51 by a strong positive mean bias, with the sea surface temperature too high up to 5 °C. 52 Key dynamical processes are presented, such as the El Niño/Southern Oscillation (ENSO) 53 whose overall performance fits with the CMIP6-like coupled models. However, in the present configuration, the amplitude is 3/3 of the observed values, and the ENSO feedbacks are 54 55 underestimated. Further, tropical waves and the Madden-Julian Oscillation are captured well, and spontaneous weak quasi-biennial oscillation is found in the 40 km atmosphere 56 57 configuration. The atmospheric dynamics at the extra-tropics of both configurations is 58 particularly noteworthy. ICON XPP exhibits a good representation of the jet stream position,

particularly in the northern extra-tropics. Closer investigations show that the influences of the transient momentum transports and their feedbacks on the jet stream are well reproduced in ICON XPP. Stratospheric dynamics further reveal a sufficiently strong polar vortex and an adequate number of sudden stratospheric warmings. A clear improvement is found for all processes for the higher-resolved configuration compared to the lower resolution. Overall,

64 ICON XPP performs at a similar level in the tested climate simulations as climate models

65 performed in CMIP6 and forms a good basis for application in the areas of climate forecasts

and projections, as well as climate research.

1. Introduction

67

68 For more than a decade, the Max Planck Institute Earth System model (MPI-ESM) has been 69 used for climate predictions and projections and climate research. Climate predictions (here 70 spanning the time range from seasons to 10 years ahead) based on MPI-ESM provide reliable 71 forecast skill (Marotzke et al., 2016) and are routinely operated by the Deutscher Wetterdienst 72 (DWD, Fröhlich et al., 2020). Further, MPI-ESM contributed to previous phases of the Coupled 73 Model Intercomparison Project (CMIP) through various configurations (e.g., Giorgetta et al., 74 2013, Jungclaus et al., 2013, Müller et al. 2018, Mauritsen et al. 2019, Gutjahr et al., 2019). 75 However, MPI-ESM will no longer be supported, and has been substituted by the ICON 76 (ICOsahedral Nonhydrostatic) model framework. Since 2020, a new modeling initiative 77 integrating numerical weather forecast, climate predictions and climate projections based on 78 the ICON framework (Müller et al., 2025). An outcome of this initiative is ICON XPP - where 79 XPP stands for eXtended Predictions and Projections -, a newly developed coupled Earth 80 System model configuration. ICON XPP will be the baseline for next generation climate 81 predictions, and provides the model platform for the contribution to the CMIP7 (Dunne et al., 82 2025). Here, we present ICON XPP, from the design of the configurations to a first evaluation 83 of the Earth System state based on the CMIP DECK (Diagnostic, Evaluation and 84 Characterization of Klima) experimentation framework (Eyring et al., 2016). Special attention 85 is given to monitoring certain aspects of the tropical and extra-tropical mean climate, and the stratosphere, including key modes of variability and their predictability, such as the El 86 87 Niño/Southern Oscillation (ENSO), or the North Atlantic Oscillation (NAO).

88 ICON XPP builds upon accomplishments of previous ICON initiatives for the individual

89 components (Zängl et al., 2015, Korn, 2017, Giorgetta et al., 2018, Nabel et al., 2020, Reick et

90 al., 2021, Schneck et al., 2022, Korn et al., 2022), and a fully-coupled Earth System model 91 (Jungclaus et al., 2022). Although these configurations are based on the same dynamical core 92 and code infrastructure of ICON, their sub-grid scale closure and parameterization differ and 93 depend on whether they are used for weather or climate scales. The design of ICON XPP aims at integrating scales from weather to climate into a single model system. It is developed by 94 95 combining some of the well-established numerical weather prediction (NWP) and climate 96 model components, and by synchronization of the physical parameterizations among weather 97 and climate timescales (Müller et al., 2025). ICON XPP consists of the atmospheric component 98 used for operational weather forecasts at the DWD (ICON NWP), which has achieved superior 99 quality of weather forecasting compared to previous NWP model generations, as well as the 100 ICON ocean and sea-ice model (Korn et al., 2022) and the land component JSBACH (Reick et 101 al., 2021) coupled to ICON NWP. 102 A central aim of ICON XPP is to substitute MPI-ESM for climate predictions, upcoming 103 climate projections and provision of basic research on fundamental climate properties. Climate 104 predictions with the MPI-ESM have demonstrated skill at various timescales from seasons to multiple decades. On seasonal timescales, MPI-ESM shows prediction skill for various 105 106 dominant modes of climate variability such as the ENSO (Fröhlich et al., 2020) and NAO 107 (Dobrynin et al. 2018, 2022), continental-scale temperature and precipitation patterns, and it is 108 recently for machine learning methodologies to assess the occurrence of heat extremes over 109 Europe (Beobide-Arsuaga et al. 2023). MPI-ESM has been also used for decadal climate 110 predictions to achieve an operational workflow (Marotzke et al., 2016, Hettrich et al., 2021). 111 The principal drivers, such as the near-term memory of the North Atlantic Ocean heat content, 112 and the long-term trends of the external forcing have manifested the near-term climate 113 predictions skills in MPI-ESM (i.e., Marotzke et al. 2016 and references therein). In addition, 114 predictions skill is assessed for key processes, such as the Quasi-Biennial Oscillation (QBO, 115 Pohlmann et al., 2013), storm tracks in the northern hemisphere extra-tropics (Kruschke et al., 116 2016, Schuster et al., 2019), and the NAO (Smith et al. 2020, Athanasiadis et al., 2020). Further, 117 skill is found for climate impacts, such as continental-scale surface temperature (Müller et al., 118 2012) and associated extremes (Borchert et al., 2019), and Earth System components, such as 119 the carbon uptake in the ocean (Li et al. 2016). Recently, MPI-ESM has been used to extend 120 the prediction skill to a multi-decadal timescale (Düsterhus and Brune, 2023). A principal 121 ambition is that ICON XPP is able to cover predictions at all timescales from months to

122 centennials. Given these targets, special emphasis is put on incorporating and improving model 123 components particularly suitable for climate predictions. Though this attempt is quite broad, 124 first initiatives led to the inclusion of a higher-resolving stratosphere, and special attention was 125 paid to the key properties in the tropics and the extra-tropics. 126 While designing ICON XPP, we paid attention to fast and flexible model configurations, to 127 perform long integrations and large ensembles, in contrast to current high-resolution ICON 128 model initiatives. Long-time integrations are particularly useful while testing the parameter 129 space finding an equilibrium state of the coupled system, but also for probing the ideal setting 130 for improving key dynamics. Large ensembles are the standard procedure in simulations of 131 climate projections, and to assess reliability in the ensemble forecasts and eventually to improve the signal-to-noise ratio by adequate methodologies (Dobrynin et al., 2018, Smith et 132 133 al., 2019). Further, large ensembles are essential for the assessment of the transient climate 134 variability (Maher et al., 2019). The ICON XPP configurations presented here are designed to 135 run several simulated decades per day and are suitable for the aforementioned tasks. 136 While the development and evaluation of ICON XPP for operational climate prediction and 137 CMIP7 is still in progress, here we present its principal development lines and fundamental 138 properties of the coupled Earth System state. We use the DECK-experimental design - which 139 has been developed as a guideline to improve and compare coupled Earth System models 140 (Eyring et al., 2016) - and apply it to different ICON XPP configurations. We present the basic 141 model description and ways towards tuning the model climate, followed by an evaluation of 142 the basic climate state, trends, and climate sensitivity in the DECK experiments.

143

144

145

2. Model Description, Configurations, and Tuning

- 2.1 Model Components
- 146 ICON XPP combines Earth System components that have been established for operational
- 147 weather forecasting and climate application, and here are plugged together for the first time. In
- the following, the components that form ICON XPP are described in more detail.
- 149 ICON NWP

150 The atmospheric component of ICON XPP is based on the operational configuration of ICON 151 NWP (Zängl et al. 2015). In ICON NWP, the basic non-hydrostatic model equation system is 152 solved on a triangular grid. The vertical grid of ICON is a terrain-following hybrid sigma height grid (Leuenberger et al., 2010, Giorgetta et al., 2018), with a model top at 75 km. The 153 154 centerpiece is the dynamical core, in which the model equations are integrated forward in time, 155 followed by the numerical advection schemes and physical parameterizations (for details see, 156 Prill et al., 2024). ICON NWP uses the physics packages from the operational regional model 157 COSMO (Doms and Schättler, 2004), and from the ECMWF Integrated Forecast System 158 (Zängl et al. 2015). For radiation, the ecRad scheme is used in ICON NWP (Hogan and Bozzo, 159 2018). An overview of the physical parameterizations is given in Müller et al. (2025, Table 1). 160 ICON Land ICON XPP uses the land surface component of ICON (ICON Land). ICON Land uses the 161 JSBACH land-surface model developed for predecessors of ICON XPP such as MPI-ESM 162 163 (Reick et al., 2013, 2021). JSBACH version 3 (JSBACHv3) operated as a part of MPI-ESM in both, concentration and emission-driven modes, and demonstrated good performance of 164 165 terrestrial carbon cycle in CMIP6 (Hajima et al., 2024). JSBACH version 4 (JSBACHv4) includes climate-relevant physical and biogeochemical processes, such as a full carbon cycle, 166 167 dynamic vegetation, and land-cover changes for land use. In addition, soil physics in JSBACHv4 are improved in permafrost regions compared to JSBACHv3. The land surface 168 169 model can be used in stand-alone mode, as well as in the fully coupled Earth System models 170 (Jungclaus et al., 2022). 171 For ICON XPP, JSBACH is newly implemented together with its parameterization of the 172 vertical diffusion as an implicitly coupled module of ICON NWP. As TERRA, JSBACH 173 accounts for subgrid heterogeneity. However, in contrast to TERRA, in which tiles are treated 174 externally, JSBACH uses them internally to account for different land surface types and plant 175 functional types (PFTs) as a basis for biogeochemical processes. Therefore, a new interface layer is developed between JSBACH, its vertical diffusion scheme, and the rest of the NWP 176 177 parameterizations. This new interface layer results in the adjustment of code for other sub-178 components. For example, parts of the sea-ice thermodynamics scheme are re-implemented, 179 and the coupling to the ocean is generalized.

181 Hydrological Discharge Model 182 A hydrological discharge (HD) model is used in ICON XPP to route water from the land model 183 JSBACH to the river mouths feeding into the ocean model ICON O. In ICON XPP we can 184 choose between two HD model versions. One is the internal HD model integrated within 185 JSBACH. This HD model operates at the same horizontal resolution and time step as JSBACH, 186 maintaining coherence between land and hydrological processes. Automatic generation of HD 187 parameters for ICON grids based on high resolution digital elevation data (Riddick et al., 2018, 188 Riddick, 2021) allows HD application on any spatial resolution using none or minimal manual 189 adjustments. This model is used for ICON XPP in the fast configuration (see section 2.2). 190 For the higher-resolved ICON XPP configuration, a new version of the HD model with 191 relatively high resolution of 0.5° is used externally to JSBACH (Hagemann et al., 2023). It is 192 a separate component coupled via YAC (Yet Another Coupler, Hanke et al., 2016) with both 193 the land-surface and the ocean model component. In this setup, the 0.5-degree HD model is 194 coupled to the atmosphere and the ocean with daily intervals. The land-surface scheme from 195 ICON NWP handles surface and subsurface runoff, which are interpolated by YAC onto the 196 HD latitude-longitude grid. This approach offers the advantage of being independent of the 197 land model, allowing HD to work with other land models such as TERRA. It will also easily 198 allow future applications using the HD model at its higher resolution of 1/12° (Hagemann et 199 al. 2020), and taking advantage of ongoing developments in riverine transport of 200 biogeochemical tracers (e.g. Elizalde et al. 2025). 201 ICON O/Sea-Ice 202 The ocean component of ICON solves the hydrostatic Boussinesq equations of large-scale 203 ocean dynamics with a free surface (Korn, 2017, Korn et al., 2022). ICON O uses the same 204 horizontal grid and data structures as the atmosphere. For the vertical grid, the actual model 205 uses depth-based coordinates such as z or z*-coordinates as the default option (Korn et al., 206 2022). For ICON XPP, we use the uniformly vertical-distributed grid with the z*-coordinate. 207 Further, a newly developed sea-ice dynamics is applied that operates on the native ICON grid 208 (Mehlmann and Korn, 2021, Mehlmann et al., 2021). The sea-ice thermodynamics are 209 unchanged and continue to use the zero-layer model (Semtner, 1976). At the bottom, melting 210 potential and conductive heat flux are passed to dynamic sea-ice components by use of the 211 YAC coupler.

HAMOCC

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

The ocean biogeochemistry component in ICON XPP is represented by the HAMburg Ocean Carbon Cycle model, HAMOCC6 (Ilyina et al., 2013, Paulsen et al., 2017), featuring biology and inorganic carbon chemistry processes in the water column and sediment. The growth of bulk phytoplankton is limited by temperature and light as well as by the availability of nutrients including nitrate, phosphate, and iron linked by constant Redfield ratios across organic compartments. The growth of nitrogen-fixing cyanobacteria is parameterized analogously to that of the bulk phytoplankton, albeit at a lower rate and is extended by representing their buoyancy. Detritus is explicitly separated into opal- and calcium carbonate-producing phytoplankton fractions. Zooplankton growth function is limited by the grazed phytoplankton, mortality, and metabolic activity. The dissolved organic matter pool is shaped by the exudation of phytoplankton, cyanobacteria, and zooplankton. All the biogeochemical tracers are transported by the flow field. HAMOCC has been extensively evaluated as part of MPI-ESM (e.g. Mauritsen et al., 2019; Müller et al., 2018; Li et al., 2023; Nielsen et al., 2024) and implemented in previous configurations of the ICON-based models (Jungclaus et al., 2022; Hohenegger et al., 2023). Compared to its predecessors, HAMOCC in ICON XPP incorporates a prognostic calculation for marine aggregate sinking speeds (Maerz et al., 2020), providing an improved distribution of particulate organic carbon fluxes critical to the ocean biological pump.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

2.2 Configuration

We use the latest ICON model version (ICON release 2024.07). Two configurations have been developed, differing mainly in spatial resolutions. One configuration, intended for operational climate prediction and projections, utilizes the atmospheric model ICON NWP with approximately 80 km horizontal grid spacing (r2b5) and 130 vertical levels (L130, Niemeier et al, 2024). The vertical spacing of the layers increases up to a value of 500 m at an altitude of about 14 km and stays constant (500 m) until an altitude of 35 km. Above this height the vertical distance increases until the model top at 75 km altitude (Fig. 1). This configuration uses the externally calculated HD model as described above. The ocean model operates at a resolution of about 20 km (r2b7) with 72 vertical levels (L72). The integration time steps for ICON NWP and ICON O are 450 seconds and 20 minutes, respectively. The coupling interval between the atmosphere and ocean is 60 minutes. Due to its high resolution and frequent computation intervals, this configuration is computationally expensive, but a throughput of ~45 simulated

years per day on 100 nodes ensures long integrations. The experiments are run on the CPU-partition of a High-Performance Computing system at the Deutsche Klimarechenzentrum (DKRZ), with each node consisting of 64 cores. This configuration is named "80/20" hereafter to reflect the grid-scale of the atmospheric and ocean components.

In addition, a fast configuration with coarser resolutions was developed to allow more efficient simulations. In this configuration ICON NWP is run with a 160 km grid (r2b4) with 90 vertical levels (L90) and model top at 75 km, while ICON O operates on a 40 km grid (r2b6). The HD model is implemented internally to JSBACH. Additionally, the ocean model's time step is increased as compared to the 80/20 configuration to 30 minutes. The coupling interval between the atmosphere and ocean is 30 minutes for this configuration. This faster configuration is designed for running large ensembles and long integrations and has a throughput of ~85 simulated years per day on 40 computing nodes. This configuration is referred to as "160/40" hereafter.

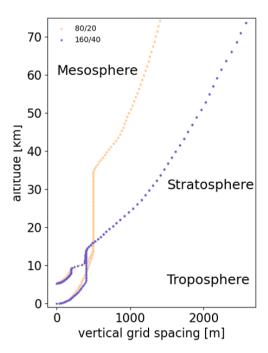


Figure 1: Full-level height (km) and vertical grid spacing (m) of the vertical grids of ICON XPP 160/40 and 80/20. For each grid two profiles are shown, one starts at sea level (triangle down) and one starts at a height of ~ 5 km representing the grid over mountains (triangle up).

2.3 Tuning

The model configurations are tuned towards pre-industrial climate targets. The targets mainly consider the thermodynamic state of the atmosphere - depicted by the top-of-atmosphere radiation balance and global-mean temperature at 2 metre - and the ocean-cryosphere - by the strength of the Atlantic meridional overturning circulation (AMOC) and sea-ice properties. The thermodynamic state of the atmosphere is mainly controlled by parameters in the convection, microphysics and cloud cover parameterization schemes. The ocean state is controlled by the horizontal and vertical diffusion, eddy parameterizations, and sea-ice parameters (Table 1).

The spin-up is started from the Polar Science Center hydrographic climatology (PHC3.0, Steele et al., 2001). The top of the atmosphere (TOA) radiation values are well-balanced with values of $0.2~\rm W/m^2$ (-0.1 W/m²) for the 160/40 (80/20) configuration. A global mean near-surface temperature (GMT) of ~13.8 °C is achieved for both configurations. Figures 2a and 2b show the evolution of the radiation and GMT. The figures illustrate that the atmosphere reaches quasi-equilibrium after ~200 years, despite small trends towards lower temperatures remaining at the end of the simulations. The ocean state is also well-balanced as indicated by the AMOC @26° N and 1000 m depth (Fig. 2c), but requires ~500-600 years to reach equilibrium. In 160/40 a small trend remains for the AMOC at the end of the simulation.

The tuning of the ocean biogeochemistry is carried out after the spin-up of the coupled configuration. The target is to limit drifts in the biogeochemical tracer fields and fluxes and to drive the model closer to observations. HAMOCC tracers are initialized from a tuned standalone 40 km ocean setup, which was spun up for ~1000 years in a pre-industrial climate. The HAMOCC tuning parameters were changed accounting for the ocean circulation in the coupled model. The appropriate weathering rates were updated during the simulation, to compensate for the loss of carbon and nutrients from the water column to the sediment,.

Parameter Values	Process	160km/40km	80km/20km	Default
ICON NWP				
Entrainment rate [m ⁻¹] (tune_entrorg)	Convection	0.0021	0.0028	0.00195

Cloud cover parameter (tune_box_liq_asy)	Cloud microphysics	3.35	3.6	2.5
Turbulent diffusion (f_theta_decay)	Vertical diffusion	1.0	1.0	4.0
ICON O				
TKE mixing (c_k)	Vertical diffusion	0.05	0.1	0.1
Minimum interior mixing [m ² s ⁻²] (tke_min)	Vertical diffusion	1.0e-5	1.0e-6	1.0e-6
Biharmonic Viscosity Parameter [m ⁴ s ⁻¹]	Horizontal velocity diffusion	3.5e12 (no scaling)	0.027 (scaling with edge length)	/
Gent&McWilliams [m ² s ⁻¹] (tracer_GM_kappa)	Eddy Parameterization	400	400	1000 (corresp. to 400 km grid- length)
Redi [m ² s ⁻¹] (tracer_isoneutral)	Eddy Parameterization	400	400	1000 (corresp. to 400 km grid- length)
Sea ice parameter (leadclose1)	Sea ice melting	0.25	0.25	0.5
Sea ice parameter (leadclose2)	Sea ice freezing	0.666	0.0	0.0 (Hibler)

Table 1: Parameter values used for tuning the ICON XPP configuration towards the pre-industrial climate targets.

 $287 \qquad \text{The table only shows parameters which values differ with respect to the ICON NWP and ICON O default values}.$

The default for ICON NWP and ICON O is related to the ICON release (2024.07) and the namelist document

therein.

290

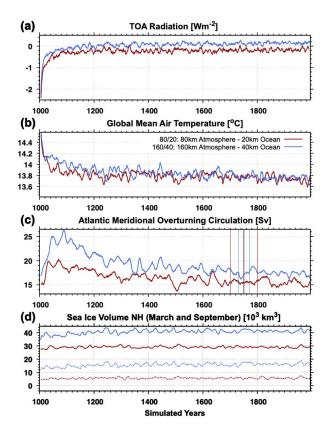


Figure 2: Climate equilibrium in CTRL indicated by the evolution of (a) TOA net radiation, (b) GMT, (c) Atlantic meridional overturning circulation, and (d) the northern hemisphere sea-ice volume. Units are in (a) W m⁻², (b) °C, (c) Sv, and (d) km³. In each figure 80/20 is shown in red and 160/40 is shown in blue. The vertical lines in (c) indicate the initialization dates for HIST. In (d) solid/dashed lines represent northern hemispheric winter/summer.

3. Mean Climate, Trends and Climate Sensitivity

3.1 DECK Experiments

We perform DECK experiments, which have become a common tool for coordinating a comparable design of global climate model simulations (Eyring et al., 2016). Pre-industrial control simulations (CTRL) for each configuration are performed based on the spin-up experiments. For each configuration a spin-up and CTRL of total length of 1000 years are pursued. Further, ensembles of experiments with historical forcing from CMIP6 (HIST) are

used to analyse the present-day evolution of climate. The initial conditions for the historical experiments are based on the coupled control climate with a 50-year lag for subsequent members. Finally, the climate sensitivity is estimated by 1% CO₂ increase until doubling (1%CO₂) and abrupt 4 x CO₂ (4xCO₂) experiments. Table 2 gives an experiment overview.

Experiment List	Description	Number of simulated years	
Spin-up and pre-industrial control simulation (CTRL)	Started from Levitus and external forcing only	1000	
Historical simulation (HIST)	Started from CTRL with transient external forcing, 3 ensemble members	1850-2014	
1% increase of CO ₂ (1%CO ₂)	Atmospheric CO ₂ concentration prescribed to increase at 1 % yr ⁻¹	150	
4x abrupt CO ₂ (4xCO ₂) Atmospheric CO ₂ concentration quadrupled and then held con		150	

Table 2: List of experiments, short description and number of simulated years of DECK experiments for both configurations.

3.2 Pre-industrial Control Climate

The CTRL experiments reveal bias distributions well-known in coupled climate models. Near-surface temperatures in both configurations exhibit warm biases in the upwelling region at the coastal western boundaries (Fig. 3). A cold tongue is visible in both configurations in the tropical Pacific, and a further cold bias hot spot is found along the North Atlantic Current. The Southern Ocean marks an area with a very pronounced warm bias up to 5 °C (3 °C) in 160/40 (80/20), which appear relatively large compared to the CMIP6 multi-model mean (2-2.5K, Luo et al. 2023) and the previous model generations (Müller et al., 2018, Jungclaus et al., 2022). Preliminary analysis of the sources of these biases point towards a too deep ocean mixed layer in the Weddell Sea associated with strong vertical mixing (not shown). In addition, the atmosphere reveals a strong short-wave net radiation bias over the Southern Ocean, which is related to the appearance of too few clouds. The cloud bias is also found in an AMIP-type simulation and reveals that in this area the clouds comprise too little cloud water and too much cloud ice. To disentangle the atmospheric and oceanic effects on the Southern Ocean bias is

327 still under investigation. The global standard deviation of the error is ~2.4 °C for 160/40 and ~1.7 °C 80/20, which indicates a substantial effect by the resolution increase. Such a resolution 328 329 effect on the mean error is also found in the MPI-ESM (Müller et al., 2018). 330 The sea-ice reveal reasonable distributions in the northern hemisphere peak season with 2-3 m 331 sea-ice thickness in the central Arctic and 0.1-0.2 m within the Labrador Sea (Fig. 4, shown 332 only for 80/20, but similar in 160/40). During the minimum seasons in the northern and 333 southern hemisphere both configurations show only little sea-ice thickness. The sea-ice volume 334 of 80/20 in the peak seasons is about 30 x 10³ km³ in the northern hemisphere (Fig. 2d), which 335 is comparable with the PIOMAS arctic sea-ice volume reanalysis (30-35 x 10³ km³ April value during 1980s; Zhang and Rothrock, 2003), and 13 x 10³ km³ in the southern hemisphere (not 336 337 shown). During hemispheric summer seasons the sea-ice volume drops to 5 x 10³ km³ in the Arctic (PIOMAS ~15 x 10³ km³ September values during the 1980s, Schweiger et al., 2011) 338 and 0.5 x 10³ km³ in the Antarctic region. The 160/40 configuration generally produces much 339 340 more sea ice compared to 80/20 (Fig. 2d red curves), which can also be inferred from the 341 surface temperatures in high latitudes (Fig. 3a). 342 The state of the ocean circulation of the two configurations is described by the overturning 343 circulations in the Atlantic and Indo-Pacific (Fig. 5) and transport through various passages (table 3). The overturning in the Atlantic shows peak magnitudes of ~15-20 Sv at 26° N at 1000 344 345 m depth, which is comparable to the RAPID array (~17 +/-4 Sv, Frajka-Williams et al., 2019). 346 The two configurations show a monocell structure with a northward transport of water masses 347 in upper and mid-levels and southward transport in deeper levels. In the Pacific, the surface 348 values indicate the subtropical cells at the northern and southern hemisphere. At deeper levels 349 a basin-wide mid-depth outflow occurs in both configurations. 350 The transports through the passages in both configurations are mostly simulated within the 351 observational uncertainty found in the literature (see table 3 for values and references). The 352 transport through Bering Strait - a key element of the Arctic freshwater budget, are close to the 353 estimates by Woodgate et al. (2006, 2012). The exchange of water masses between the Atlantic 354 Ocean and the Nordic Seas plays a vital role in driving the global overturning circulation. The 355 simulated transport rates are consistent with the circulation pattern described by Hansen et al. 356 (2008). Similarly, the Indonesian Throughflow is a key component of the warm-water branch 357 of the global conveyor belt. Although the simulated transport in this region is slightly 358 underestimated compared to the values reported by Gordon et al. (2010), it still aligns

360361

362363

365

366

367368

reasonably well with observational estimates. These transports are similar to what is found in MPI-ESM (cf Table 5 in Müller et al., 2018) and ICON-ESM (cf Table 4 in Jungclaus et al., 2022). The Drake Passage transport is notably underestimated in 80/20, both when compared to the traditional estimate of around 135 Sv (Cunningham et al., 2003; Nowlin & Klinck, 1986) and to the more recent compilation by Donohue et al. (2016).

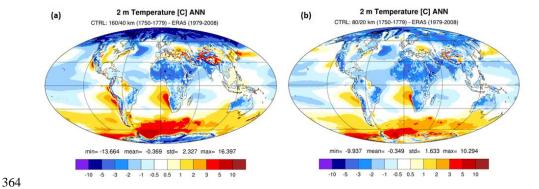


Figure 3: Near-surface temperature bias for a 30-year time slice for CTRL for (a) 160/40 and (b) 80/20. As reference ERA5 for the period 1979-2008 is used. Units are [°C].

371

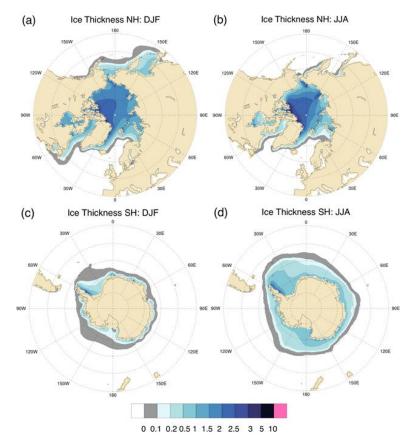


Figure 4: Sea-ice thickness for 80/20 for (a, b) the northern and (c, d) southern hemisphere for (a, c) December, January, February (DJF) and (b, d) June, July, August (JJA) for 80/20. The same 30-year timeslice of CTRL as in figure 3 is used. Units are in [m].

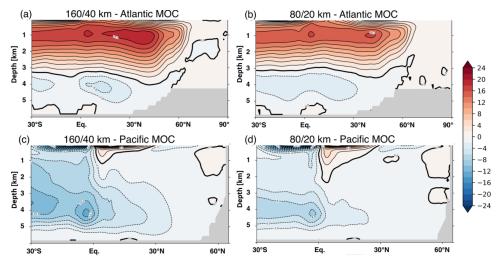


Figure 5: The overturning circulation in the Atlantic (a,b) and Indio-Pacific (c,d) for 160/40 (a,c) and 80/20 (b,d). For both, the same 30-year timeslice of CTRL as Figure 3 is used. Units are in Sverdrup [10⁹ kg s⁻¹].

The ocean biogeochemistry for the 80/20 configuration is shown in Fig. 6, depicting the phosphate, total alkalinity, and dissolved inorganic carbon (DIC) at the surface compared to the Global Ocean Data Analysis Project (GLODAP) version 2 database (Olsen et al. 2016). The spatial patterns of biogeochemistry fields are captured, with bias patterns similar to other Earth System models and previous ICON-ESM simulations (Jungclaus et al. 2022). Surface phosphate is underestimated in the eastern equatorial Pacific and Southern Ocean, and overestimated along the southern Chilean coast. The bias in surface alkalinity and DIC is relatively small in most regions, with higher biases observed in coastal regions due to underrepresentation of coastal carbon dynamics (Mathis et al. 2022). The global pattern of surface alkalinity bias follows the bias in sea-surface salinity, with negative salinity bias leading to negative alkalinity bias. Since the model is forced with constant pre-industrial atmosphere CO₂, the surface DIC in the model adjusts to the surface alkalinity. Therefore, bias in surface alkalinity is compensated by bias in surface DIC, maintaining a correct ocean pCO₂ field. The simulated global flux of CO₂ into the ocean is approximately 0.1 PgC/year, close to the equilibrium levels at pre-industrial conditions.

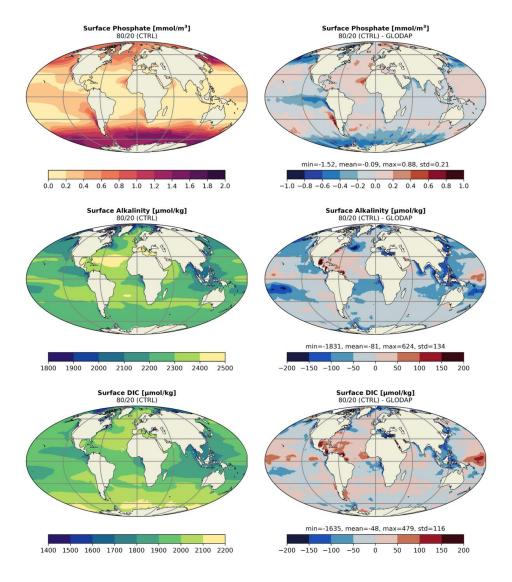


Figure 6: Simulated phosphate (upper), alkalinity (middle) and DIC at the surface (lower) for 80/20 climatology (left) and corresponding difference to reference data from the Global Ocean Data Analysis Project version 2 database (right). The GLODAP phosphate and alkalinity are climatological means and the DIC is from pre-industrial estimates. The analysis is based on a 30-year time window of the CTRL experiment.

The performance of the land carbon model is illustrated by a plot of gross primary productivity (GPP) for CTRL simulations in the 160/40 and 80/20 configurations (Fig. 7). The spatial GPP patterns in both configurations look very similar, with tropical productivity being much higher

than extra-tropical productivity, as expected. The patterns reflect the simulated biases in tropical precipitation (e.g., over eastern and central South America), but are otherwise very similar to the pattern simulated with MPI-ESM in CMIP6. The total annual productivity fluxes are 114.5 ± 1.8 PgCyr-1 and 112.9 ± 1.6 PgCyr-1 in the 160/40 configuration and the 80/20 configuration, respectively. Both model configurations are well within the CMIP6 model range for the pre-industrial period and close to the AR6 estimate of pre-industrial GPP in 113 PgCyr-1 (Canadell, J.G., et al., 2021).

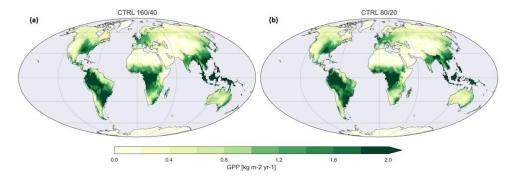


Figure 7: 30-years mean of yearly accumulated gross primary productivity for CTRL of ICON XPP in the (a) 160/40 and (b) 80/20 configurations.

Experiment List	160/40	80/20	Observations
Bering Strait [Woodgate et al. (2006) and Woodgate et al. (2012)]	1.0	1.1	0.7–1.1
Fram Strait [Fieg et al. (2010]	-1.5	-2.0	-1.75 ± 5.01
Denmark Strait [Hansen et al. (2008); Jochumsen et al. (2012)]	-5.0	-5.2	-4.8; - 3.4 ± 1.4
Iceland-Scotland [Hansen et al. (2008); Rossby and Flagg (2012)]	4.9	5.1	4.8; 4.6 ± 0.25
Indonesian Throughflow [Gordon et al. (2010)]	12.4	12	11.6–15.7
Drake Passage [Nowlin and Klinck (1986); Donohue et al. (2016)]	152.1	111	134.0 ± 14.0; 173.3 ± 10.7

Table 3: Simulated and observed net volume transports across sections (positive means northward). Units are in [Sv].

414415

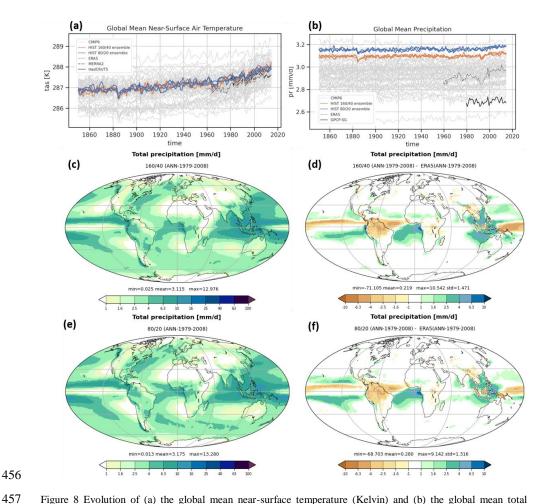
416417

418419

3.3 Transient Climate - 1850 to present

To recreate the climate of the historical period from 1850 to present, we employed external forcings from CMIP6, as the CMIP7 input data were not yet available at the time of these experiments. Specifically, we included yearly anthropogenic land cover changes, volcanic aerosol, and anthropogenic aerosol, which were added to the baseline aerosol concentrations

420 of the pre-industrial period. Additionally, monthly ozone data and annual greenhouse gas 421 concentrations were incorporated to reflect the evolving atmospheric composition over time. 422 All experiments were conducted using the tuned namelist parameters derived from the CTRL 423 experiments (see Section 3.2). For each of the configurations, a small ensemble of three 424 members was generated. Each ensemble member was initialized from the corresponding CTRL 425 experiment. The members differ only in their starting points, which were selected from various time points with the distance of 50 (160/80) and 25 years (80/20) apart in the CTRL period. 426 427 Figure 8 shows the temporal evolution of GMT and global mean total precipitation. The 428 development of GMT is close to observations from the 1960s onwards, and in the 2010s is 429 about ~1.2 °C above 1850-1900. The increase is in the range of observed warming of 0.9-1.2 °C (Gulev et al., 2021). The global mean total precipitation shows a substantial positive bias in 430 431 both configurations compared to GPCP and ERA5, and is on the upper end of all CMIP6 432 models. The global distribution of the bias reveals a strong double-ITCZ in the tropical Pacific 433 with values up to 6 mm/day within the southern hemispheric branch, and particularly high 434 values in the tropical Atlantic. Over the tropical continental regions strong dry bias occurs, such as in the Amazon and over Indonesia. The precipitation bias in the tropical Pacific imposes 435 436 a limitation for the global climate because it covers a large region of the globe in a rain-437 dominated area. The causes are currently unclear, and further investigations are in progress. 438 In addition, we show the vertical temperature bias of the two configurations (Fig. 9). The bias 439 structures are characterized by cold biases of the tropical atmosphere above the boundary 440 layers, cold biases at tropopause levels, and warm biases at the surface in the high latitudes. 441 The tropical cold bias reaches up to -1 °C in the 160/40 configuration accompanied with upper-442 level positive biases in the sub-tropics. The cold bias in 80/20 is increased up to -2 °C and 443 reaches the sub-tropical regions. The positive surface bias is relatively large over the Southern 444 Hemisphere with values up to 5 °C in both configurations and are in line with surface 445 temperature distribution in Figure 3. 446 A summary of the model performance is given in Figure 10, which compares several key 447 dynamical and thermodynamic variables with the CMIP6 model ensemble. A clear shift 448 towards smaller errors is found by increasing the resolution from the 160/40 to the 80/20 449 configuration. A similar impact of resolution is found for previous model versions, such as for 450 MPI-ESM (Müller et al., 2018). Exceptions to the reduction of RMSE with resolution are 451 variables describing the cloud properties and liquid water path, which underlines a systematic


bias in the configurations with respect to the long-term mean hydrosphere. The 80/20 ensemble, however, exhibits a relatively strong performance among the CMIP6 models for dynamical variables, such as zonal wind and temperatures in the mid- and upper troposphere.

452

453

454

456

458

459

460

461

Figure 8 Evolution of (a) the global mean near-surface temperature (Kelvin) and (b) the global mean total precipitation (mm day-1) from the three historical ensembles HIST for the 160/40 (orange) and the 80/20 configuration (blue). The evolutions are compared with CMIP6 models (grey) and respective observations/reanalyses (black). Geographical distribution of absolute values of (c, e) total precipitation and (d, f) precipitation bias with respect to ERA5 for one member of the (c, d) 160/40 and (e, f) 80/20 configuration, averaged for the period 1979-2008 both in (mm/day). Details on reference data sets are given in Table 4.

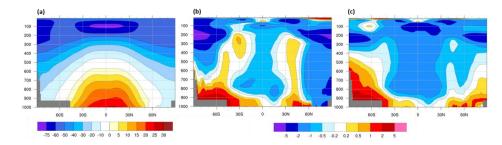
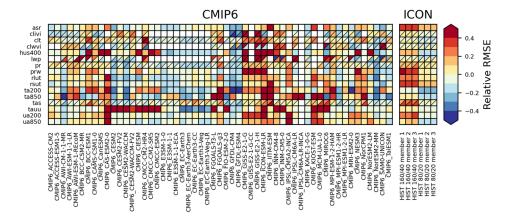



Figure 9: (a) Annual man zonal mean temperature in the troposphere for the period 1979-2008 for ERA5 and biases for HIST for one member of the (b) 160/40 and (c) 80/20 resolutions. Units are [°C].

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

463 464

Figure 10: The performance matrix for the 160/40 and 80/20 resolutions (rightmost columns) and CMIP6 models (left columns) for key dynamical and thermodynamic variables. Shown are normalized relative space-time root mean square errors (RMSEs) of the climatological seasonal cycle with respect to reference observational data sets. The normalization is done relative to the ensemble median of all models, with positive values (red) denoting a higher RMSE and thus worse performance, while negative values (blue) denote a lower RMSE than the ensemble median and thus a better performance. The considered time period is 2000-2014 for the models, for the observational reference data the time period had to be adjusted to the available time frame (see Table 4 for details). Boxes with a diagonal split indicate that two different reference data sets are used, with the first mentioned reference in the top left corner. The variables shown are the absorbed solar radiation (asr; reference: CERES-EBAF), ice water path (clivi; references: ESACCI-CLOUD, MODIS), total cloud cover (clt; references: ESACCI-CLOUD, PATMOS-x), condensed water path (clwvi; references: MODIS, ESACCI-CLOUD), specific humidity at 400hPa (hus400; reference: ERA5), liquid water path (lwp; references: ESACCI-CLOUD, MODIS), total precipitation (pr; references: GPCP-SG, ERA5), water vapor path (prw; reference: ESACCI-WATERVAPOUR), TOA outgoing longwave radiation (rlut; reference: CERES-EBAF), TOA outgoing shortwave radiation (rsut; reference: CERES-EBAF), temperature at 200 hPa (ta200; reference: ERA5) and 850 hPa (ta850; reference: ERA5), surface temperature (tas; references: HadCRUT5, ERA5), zonal wind stress (tauu; reference: ERA5), and zonal wind at 200 hPa (ua200; reference: ERA5) and 850hPa (ua850; reference: ERA5).

Reference data sets	Туре	Variables	Time range used in Figure 7	Reference
CERES-EBAF Ed4.2	Satellite	Absorbed solar radiation (asr) TOA outgoing longwave radiation (rlut) TOA outgoing shortwave radiation (rsut)	2001-2014	Loeb et al. (2018)
ERA5	Reanalysis	Specific humidity (hus) Total precipitation (pr) Air temperature (ta) Near-surface air temperature (tas) Zonal wind stress (tauu) Zonal wind (ua)	2000-2014	Hersbach et al. (2020)
ESACCI-CLOUD	Satellite	Ice water path (clivi) Condensed water path (clwvi) Total cloud cover (clt) Liquid water path (lwp)	2000-2014	Stengel et al. (2020)
ESACCI- WATERVAPOUR	Satellite	Water vapor path (prw)	2003-2014	Schröder et al. (2023)
GPCP-SG v2.3	Satellite - gauge	Precipitation (pr)	2000-2014	Adler et al. (2017)
HadCRUT5 v5.0.1.0 (analysis)	Ground	Near-surface air temperature (tas)	2000-2014	Morice et al. (2021)
MERRA2	Reanalysis	Near-surface air temperature (tas)	Not used	Gelaro et al. (2017)
MODIS	Satellite	Ice water path (clivi) Condensed water path (clwvi) Liquid water path (lwp)	2003-2014	Platnick et al. (2003)
PATMOS-x	Satellite	Total cloud cover (clt)	2000-2014	Heidinger et al. (2014)

Table 4: Observational reference data sets used in Fig. 7.

486 487

3.4 Climate Sensitivity

Climate sensitivity describes the response of the climate system to radiative forcing and is a key indicator for future evolution of climate. Two metrics are commonly used: the transient climate response (TCR) and the equilibrium climate sensitivity (ECS).

https://doi.org/10.5194/egusphere-2025-2473 Preprint. Discussion started: 12 June 2025 © Author(s) 2025. CC BY 4.0 License.

491 TCR is determined from the 1%CO2 experiment as the global mean surface air temperature 492 increases (relative to the CTRL experiment) around the time of doubling CO₂. Following 493 Meehl et al. (2020) and Jungclaus et al. (2022), a 20-year average is taken around the doubling of CO₂ in order to reduce the potential influence of internal variability. The TCR is 1.7 K for 494 495 the 160/40 configuration and 1.6 K for the 80/20 configuration (Fig. 11a,b). The assessment of climate sensitivity in CMIP6 models shows a best estimate of TCR=1.8 K with a very likely 496 497 range of 1.2 to 2.4 K. 498 ECS is approximated with the so-called "effective climate sensitivity" (Gregory et al., 2004) 499 using an idealized experiment where the atmospheric CO₂ concentration is abruptly quadrupled (4xCO₂). For this, a linear regression is applied between the global mean surface air 500 501 temperature change (relative to the CTRL experiment) and the net downward radiative flux at the top-of-atmosphere over 150 years of the simulation (see Fig. 11c,d). The extrapolation of 502 503 the regression line to zero net radiation gives the temperature response with quadruple increase in CO₂, which is then divided by two to get an estimate for the ECS. This results in an ECS of 504 505 2.47 K for the 160/40 configuration and 2.32 K for the 80/20 configuration. The assessment of climate sensitivity in CMIP6 models shows a best estimate of ECS=3 K with a very likely 506 507 range of 2 to 5 K (Forster et al. 2021). The climate sensitivity of ICON XPP falls within these 508 CMIP6 ranges, tending towards the lower end of the spectrum.

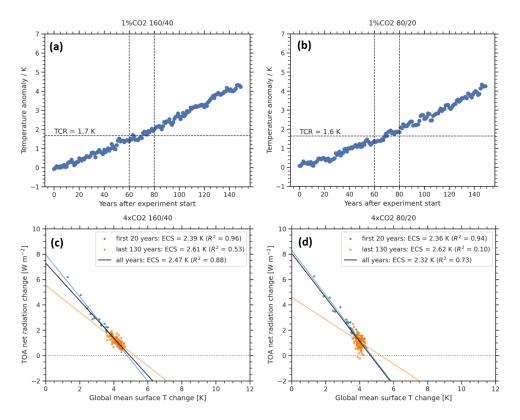


Figure 11: Estimating climate sensitivity. The Transient Climate Response (TCR) is estimated from the global mean surface air temperature anomaly at the time of CO_2 doubling (at year 70) in the $1\%CO_2$ experiment for (a) 160/40 and (b) 80/20. The Equilibrium Climate Sensitivity (ECS) as diagnosed from scatterplot between TOA net radiance and global mean surface temperature anomaly, including linear regression for (c) 160/40 and (d) 80/20. ECS is estimated from 150 years of the $4xCO_2$ experiments (black line), but since the assumption of linear feedback is only an approximation, regression lines and estimated ECS values for the first 20 years (blue line) and the last 130 years (orange line) are shown for completeness.

4. Key dynamical processes in the tropics, extra-tropics and stratosphere

ICON XPP is intended to be the successor of MPI-ESM for climate prediction research and operational forecasts. A principal foundation of climate predictions is based on the reliable description of the principle modes of variability and their associated background mean state. Examples of such modes of variability are the Madden-Julian Oscillation (MJO), ENSO, and the Quasi-Biennial Oscillation (QBO) in the tropics, or the NAO and the extra-tropical jet position in the extra-tropics. While designing the model configurations, we therefore put

special emphasis on monitoring certain aspects of the mean climate which are directly related to the principle modes.

4.1 Tropics

In contrast to the mid-latitudes, the release of latent heat is the main source of energy in the tropics. This occurs in conjunction with convective cloud systems embedded in large-scale circulations. The diabatic heating associated with tropical precipitation not only leads to a localised response in the atmospheric circulation, but can also cause a remote response through the excitation of equatorial waves.

4.1.1 Tropical Waves and Madden-Julian Oscillation

Equatorially trapped waves are a fundamental property of tropical dynamics and appear as solutions of the shallow water equations which are either symmetric or asymmetric about the equator. Among others, the observed disturbances in the clouds can be associated with equatorial trapped waves (Wheeler and Kiladis, 1999). By creating the wavenumber-frequency spectrum of the outgoing longwave radiation (OLR), modes of tropical variability can be analysed in more detail (Wheeler and Kiladis, 1999). The use of OLR implies the assumption that it is a reasonably well-described proxy for deep tropical convection and thus precipitation.

The principal nature of the tropical spectrum is red in both zonal wavenumber and frequency, with highest power at the lowest frequency and lowest zonal wavenumber. Thus, an estimated background spectrum is removed prior to the analysis of tropical waves. Most of the peaks then follow the dispersion curves of equatorial trapped waves, which are also called convectively coupled equatorial waves. However, the MJO and tropical depression-type (TD) disturbances are also present in the spectra. Most of the preferred modes of variability observed in the symmetric component are the MJO (eastward zonal wavenumber 1-5, frequencies of about <= 1/(30 days)), Kelvin waves (eastward zonal wavenumber), Equatorial Rossby waves (ER, westward zonal wavenumber) and westward inertio-gravity modes (WIG, westward zonal wavenumber, frequencies < 3 days). In general, the wavenumber-frequency spectrum has a lower spectral power in the model compared to ERA5 (Fig. 12). However, except for the WIG, the preferred modes of variability in ICON XPP (Fig.12 b,c) match with the observations (Fig. 12a) quite well, with an improvement in the Kelvin waves for the higher resolution 80/20 compared to the 160/40 configuration.

Most of the signals in the antisymmetric component can be associated with Mixed Rossby-Gravity waves (MRG) and Eastward Inertia Gravity waves (EIG) (Fig. 12d). Again, the modes of variability of the antisymmetric component are found in ICON XPP, and improve with higher resolution. One exception is the lack of the strong signal of the n=1 WIG waves (cmp. Fig. 12a and Fig. 12b,c). Both configurations show an improved representation of the equatorial waves compared to ICON-ESM (Jungclaus et al., 2022).

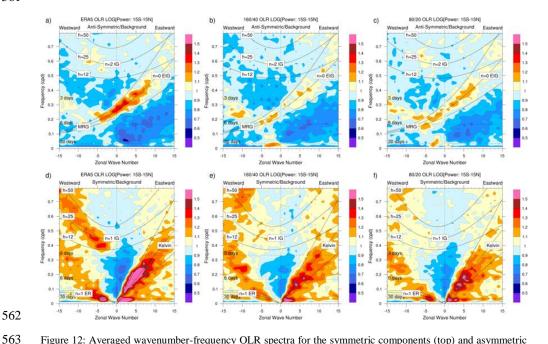


Figure 12: Averaged wavenumber-frequency OLR spectra for the symmetric components (top) and asymmetric components (bottom) between 15° S and 15° N for (a,d) ERA5, (b,e) 160/40 and (c,f) 80/20. Solid lines represent the dispersion curves of the odd (top) and even (bottom) meridional mode-numbered equatorial waves for the three equivalent depths of h = 12, 25, and 50 m [as in Wheeler and Kiladis, 1999]. For ICON XPP, high frequency output of a 10-year period (2000-2010) of one realization is used for both configurations.

4.1.2 El Niño/Southern Oscillation (ENSO)

The El Niño/Southern Oscillation (ENSO) is one of the key processes for climate predictions on seasonal to annual time scales, and is routinely predicted in numerous operational forecast systems. However, ENSO is determined by the complex interplay of the mean climate state in the tropical Pacific, the internal ENSO dynamics (Guilyardi et al., 2020), and also by global



574 remote influences, for example the Atlantic and Indian Oceans (Cai et al., 2019). In many 575 forecast systems and their underlying Earth system models, the mean state and trends of the 576 tropical Pacific - and thus the ENSO dynamics - are only inadequately represented (Guilyardi 577 et al., 2020). CMIP-like models show long-term mean errors ("cold tongue bias") and strongly 578 underestimated ENSO feedbacks. The MPI-ESM, for example, clearly has weak Bjerknes 579 feedbacks and atmospheric damping in conjunction with a strong tropical Pacific cold bias 580 (Bayr et al., 2019). This has an impact on the simulated development of an ENSO event. A 581 balanced interplay between the mean state and the ENSO dynamics in the tropics can therefore 582 be assumed as a basic prerequisite for successful ENSO predictions. 583 We investigate ENSO during the tuning process with a particular focus not only on isolated 584 ENSO performance (e.g. amplitude, seasonality etc), but also consider the ENSO dynamics 585 (feedbacks) and the ENSO relation to the mean state bias. We apply the ENSO metric package 586 developed by CLIVAR (Planton et al., 2021), which is designed to evaluate the model with 587 respect to the basic state, ENSO performance and their feedbacks, as well as the ENSO 588 teleconnections. Nino3.4-related SST anomalies for both configurations clearly exhibit an 589 ENSO pattern in the tropical Pacific for both configurations (Fig. 13). The strongest anomalies 590 are found in the central-to eastern Pacific similar to the reference. As many coupled models, 591 ENSO activity in ICON XPP exhibits a stronger westward extension of the SST anomalies than 592 observed (Capotondi et al., 2020). 593 Figure 14 gives more details of ENSO for the two configurations. Fig. 14a shows a general 594 summary of several metrics from the CLIVAR ENSO package and illustrates ENSO-related 595 mean states, performance, feedbacks and teleconnections in ICON XPP relative to the CMIP6 596 models. Values within the box indicate that ENSO in ICON XPP is within 90% confidence 597 intervals of the CMIP6 model ensemble. Positive values that are outside the box show that the 598 experiments have a significantly weaker performance than the CMIP6 models. Clearly, for the 599 performance, feedbacks and teleconnection metrics ENSO in ICON XPP is within the range of 600 the CMIP6 models. The ENSO-related mean state summary, however, indicates a larger bias 601 compared to the CMIP6 ensemble. A general improvement is found for all for higher resolution 602 experiments (80/20) compared to the 160/40 runs. 603 We further examine ENSO by looking into the individual metrics. The mean SST illustrates 604 that the model configurations are about 1.5-2 °C colder than the reference, mainly in the 605 western and central Pacific, associated with the cold-tongue bias (Fig. 14b). The west-east SST

606 gradient is about 4 °C and is close to what is shown in the Tropflux reference. In the western 607 Pacific the SST gradients are relatively steep in both configurations associated with stronger 608 surface wind stress (Fig. 14c). In the central Pacific the SST gradient flattens in both 609 configurations and the surface wind stress becomes smaller than observations. The higher-610 resolved configuration substantially improves the ENSO-related wind stress, while in the 611 160/40 resolution the maximum surface wind stress is much stronger and shifted too far 612 westward. In addition, we show the zonal mean total precipitation for the Pacific (Fig. 14d). 613 The distributions clearly reveal a double-ITCZ in both configurations, with a strong deviation 614 from observations shown in the Southern Pacific. The bias is relatively large in both 615 configurations with values up to 4-5 mm/day. The double ITCZ bias is found in many coupled 616 models, and is linked with their ENSO characteristics, such as ENSO seasonal phase-locking 617 simulation (Liao et al., 2023). 618 The ENSO characteristics of the two configurations are shown in Figure 14e-g. The ENSO 619 amplitude across the tropical Pacific shows weaker values in the eastern part and stronger 620 values in the western part (Fig. 14e) associated with mean state wind stress distribution (Fig. 621 14c). The amplitude of the Nino3.4 index appears a bit weak and is about 2/3 of the 622 observational amplitude. During the peak season of ENSO the Nino3.4 index is about 0.7 and 623 0.8°C in 160/40 and 80/20 compared to 1.2 °C in Tropflux (Fig. 14f). In addition, the ENSO 624 skewness shows larger (smaller) values in the western (eastern) Pacific and indicates a western 625 shift of the peak ENSO (Fig. 14g). 626 Finally, we show the ENSO feedbacks, since they characterize the dynamical evolution of 627 ENSO (Fig. 14h-j). A positive wind stress-SST relationship explains an anomalous zonal wind 628 with the SST propagation along the tropical Pacific. For example, during El Niño, a stronger 629 wind stress (weaker trade winds) is associated with eastward propagation of SST anomalies. 630 This relationship is captured in both configurations, but with less amplitude and the maximum 631 regression coefficients appear shifted eastward compared to observations (Fig. 14h). The wind 632 stress is furthermore related to thermocline depth, meaning that for example during El Niño 633 there is a shallowing (deepending) of the thermocline depth in the western (central-to-eastern) 634 Pacific (Fig. 14i, here the thermocline depth is illustrated by the sea surface height SSH). In 635 both configurations, the negative wind stress-SSH relationship in the western Pacific is absent, while positive regression coefficients are found in the central-to-eastern Pacific. In the central-636 637 to-eastern Pacific, the 80/20 configuration shows regression coefficients relatively close to

observation. Finally, the negative SST-heat flux relationship illustrates the atmospheric 638 639 damping effect, i.e. in case of El Niño, a warm SST anomaly results in a stronger updraft and 640 cloud cover increase which in turn reduces the net incoming radiation at the surface (Fig. 14j). 641 In ICON XPP this feedback is strongly underestimated which reflects a systematic bias in the 642 heat fluxes, in particular in the central-to-western Pacific. This is a common bias found in many 643 CMIP models, in which a weak atmospheric heat flux damping compensates the weak Bjerknes 644 feedback (Bayr et al., 2019). The weak SST-heat flux relationship in ICON XPP is dominated 645 by the shortwave radiation fluxes (not shown), similar to what is found in other models (Bayr 646 et al., 2019). In summary, ICON XPP generates an ENSO with typical characteristics and dynamics known 647 648 from observations. However, with the current parameter setting ICON XPP performs weaker 649 amplitudes and feedbacks compared to observations, but a significant improvement is found 650 for 80/20 compared to 160/40. We also find structural biases similar to the long-standing errors 651 of many coupled models. Here, the overall performance with respect to the CMIP6 models 652 reveal pronounced biases in both configurations, closely associated with the precipitation bias. However, in other key diagnostics - performance, feedbacks and teleconnections - ENSO in 653 654 ICON XPP is within the range of the CMIP6 models. 655 It is worth noting that in some aspects both configurations share similar features. An example 656 is the precipitation bias which clearly indicates a pronounced double-ITCZ, or the weak ENSO amplitudes in both configurations. This points towards systematic errors covered in both 657 658 configurations. Given that the 160/40 configuration is much faster and cheaper than 80/20, this 659 poses an opportunity to test and eventually improve the ENSO fidelity by the examination of 660 a much broader parameters space in 160/40, than it would be possible in 80/20. First attempts 661 point towards the role of cloud properties and microphysics in modulating the surface radiation 662 budget and have an effect on the atmospheric damping and the SST- wind stress feedbacks. 663 This work is in progress.

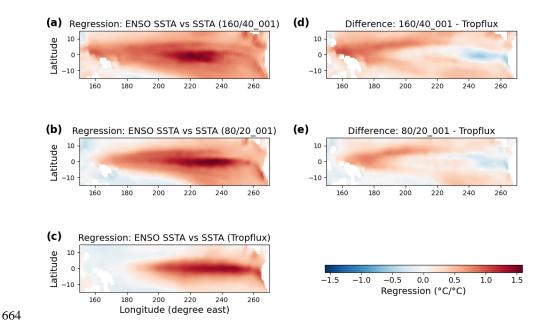


Figure 13: Regression between Nino3.4 index and SST anomalies (SSTA) for December for one member of (a) 160/40, (b) 80/20, and (c) and TropFlux. Also shown are the differences between (d) 160/40 and TropFlux, and (e) 80/20 and TropFlux. Units are in [°C/°C]. The regression is calculated with the CLIVAR ENSO metric package (see Planton et al. (2021) for details).

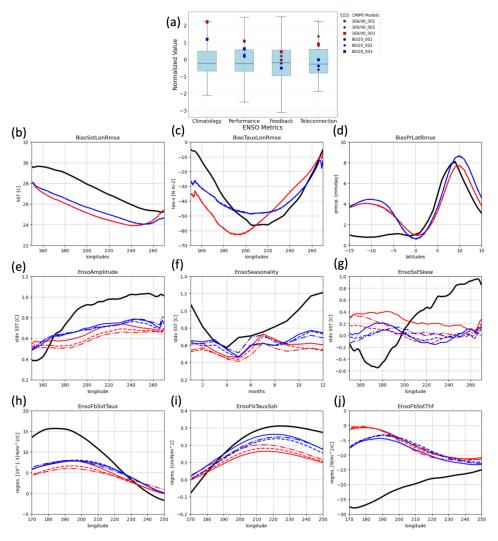


Figure 14: Description of ENSO. (a) An overall summary of different categories of the ENSO metrics (climatology, characteristics, feedbacks and teleconnections) for (red) the 160/40 and (blue) 80/20 ensemble members together with the CMIP6 models. See Planton et al. (2021) for all metrics and their definitions. Further shown are specific metrics for (b-e) ENSO-related climatology, (e-g) ENSO characteristics, and (h-j) ENSO feedbacks for (red) the 160/40 and (blue) 80/20 configurations, and (black) an observational reference. The mean states are illustrated by (b) SST averaged for 5° N to 5° S, (c) the zonal wind stress averaged for 5° N to 5° S, and (d) the precipitation averaged for 150° W to 90° W. The ENSO characteristics are described by (e) the zonal structure of the standard deviation of the Nino3.4 SST anomalies (SSTA) averaged for 5° N to 5° S, (f) the standard deviation of SSTA as a function of calendar months, (g) the skewness of SSTA in the equatorial Pacific averaged for 5° N to 5° S. ENSO is further analysed by the Bjerknes feedbacks, here shown by (h) the regression of zonal wind-stress anomalies (meridional 5° S to 5° N average) onto SSTA in the eastern equatorial Pacific (Niño3 region

averaged), and (i) the regression of sea-surface height (SSH) anomalies (meridional 5° S to 5° N average) on to wind-stress anomalies (Niño3 region averaged). The atmospheric damping is illustrated by (j) the regression total atmospheric surface heat flux anomalies on SSTA, both 5° N to 5° S averaged. The plots are calculated based on the CLIVAR ENSO metric package (Planton et al., 2021). As references this package uses GPCPv2.3 for precipitation, AVISO for SSH, and Tropflux otherwise (Praveen Kumar et al., 2012).

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

4.2 Extra-tropics - Zonal mean zonal wind and jets

The extra-tropical jets provide a substantial guideline for synoptic-scale disturbances. Among other, the extra-tropical storm paths are aligned to the position and magnitude of the seasonally and yearly varying jet positions and impact weather and climate further downstream. In addition, the time-averaged tropospheric jets act as a wave-guide for Rossby-like traveling waves propagating from the tropical regions to the extra-topics, and thereby have a control on the mid-latitude dynamics (Branstator 2002). In the extra-tropics, the zonal and meridional jet variation mark a fundamental property of the major modes of climate variability, i.e. NAO (Woolings et al., 2015), and its predictability (i.e. Strommen et al., 2023). The NAO constitutes a principal driver of the North Atlantic and European climate, and meanwhile seasonal and decadal prediction skill is established in various prediction systems and underlying coupled models (Doblas-Reyes et al., 2003, Müller et al., 2005, Scaife et al., 2014, Dobrynin et al., 2018, Smith et al., 2020, Athanasiadis et al., 2020). However, climate models still provide biases in the representation of the zonal wind, and associated jets and storm tracks. For example, CMIP6 models are generally able to reproduce storm tracks, however, they appear too zonal over the Pacific and Atlantic (Priestly et al., 2020). Over the southern hemisphere, the models tend to shift jet positions and storm tracks too far equatorwards. There is a general improvement in the biases from CMIP5 to CMIP6, which arises from the tendency of using higher model resolutions, but their bias structures still persist (Priestly et al., 2023). In MPI-ESM used for CMIP6, the mean zonal wind and storm track biases are reduced by doubling the atmospheric resolutions. The bias reduction is mainly induced by an improved wave-activity flux and eddy-driven effects on the mean zonal wind, particularly of the Northern hemisphere jet exits (Müller et al., 2018). However, a relatively strong zonal wind bias persists in the higher-resolved model version. In this respect, the underestimation of eddy-driven effects on the mean zonal wind is found in many climate models (i.e. Smith et al., 2022).

715 In ICON XPP, the zonal mean zonal wind biases in the extra-tropics appear smaller compared 716 to its predecessors ICON-ESM (Jungclaus et al., 2022) and MPI-ESM (Müller et al., 2018) In 717 the 80/20 configuration, a bias of 1-2 m/s is found at the northern hemisphere jet position (Fig. 718 15), and of 2-4 m/s in the low resolution (160/40). For comparison in MPI-ESM, zonal mean 719 zonal wind biases are about twice as large and amount to 2-4 m/s and >4 m/s for similar 720 resolutions compared to ICON XPP (cf Fig. 9 in Müller et al., 2018). For ICON-ESM, a bias 721 of up to 10 m/s is found in their 160/40 configuration (cf Fig. 12 in Jungclaus et al., 2022). In 722 the tropics, there are alternating significant positive and negative biases varying with height. 723 The biases are smaller compared to ICON-ESM but of similar magnitude compared to MPI-724 ESM. 725 To understand the reasons for the relatively small biases of the northern hemisphere zonal 726 winds, we further examine the eddy-mediated effects on the jets. Figure 16 shows the mean 727 zonal wind at a level where the jet maximum occurs and corresponding divergence of 2-6 day 728 bandpass-filtered eddy-momentum fluxes. The divergence is calculated based on the horizontal 729 components of the E-vector averaged over 200-300 hPa (Hoskins et al., 1983). The net effect 730 of the divergence is a westerly acceleration, whereas a convergence is associated with increased 731 easterlies. ERA5 reveals maximum divergence at the jet exits indicative for jet extension by 732 eddy-momentum fluxes. The figure further shows that momentum fluxes are able to force the jets towards the north-eastward direction. In ICON XPP, eddy-momentum fluxes are found 733 734 similar to ERA5 and the jet is forced towards a north-eastward direction. That is different to 735 precursors of ICON XPP, where momentum fluxes and respective jets appear more zonally 736 oriented. The magnitudes of the divergence of the momentum fluxes in 160/40 are higher than 737 in ERA5, but fits very well in 80/20. This diagnostic underlines the well-behavior of the 738 synoptic properties in ICON XPP for the mean state of the jet. It can be expected that this has 739 a positive impact on storm-track pathways and associated impact on downstream regional 740 climate.

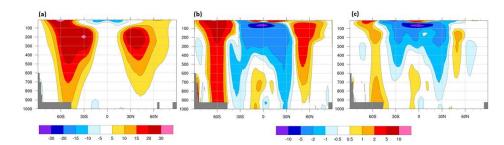


Figure 15: (a) Annual man zonal mean zonal wind in the troposphere for the period 1979-2008 for ERA5 and biases for the (b) 160/40 and (c) 80/20 resolutions. Units are [m s⁻¹].

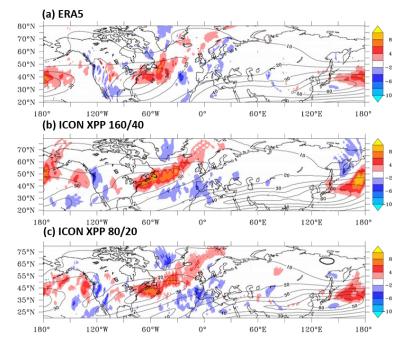


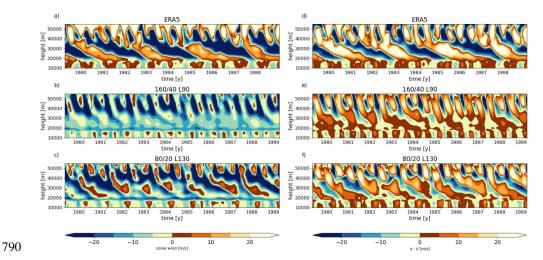
Figure 16: The effect of transient eddies on the mean state. Shown is the divergence of the E-Vector (shading) and the mean zonal wind (contours), for winter means (DJF) in (a) ERA5 (period 2000-2010) and 10-year averages for the ICON XPP (b) 160/40 and (c) 80/20 resolutions. The E-Vector is calculated by $\nabla(u^2 + v^2, -uv)$, where u and v are 2-6 day band-pass filtered zonal and meridional wind anomalies. The E-vector and mean zonal wind are averaged between 200-300 hPa. Positive values of the divergence indicate a transfer of momentum to the mean state.

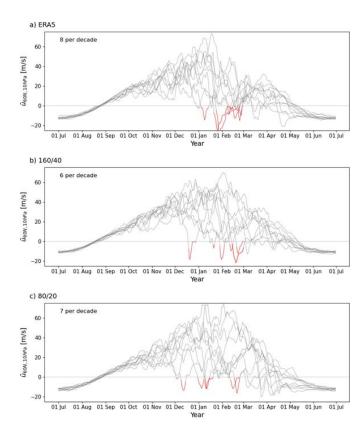
4.3 Stratosphere - QBO, Polar Vortex and Sudden Stratospheric Warmings

755 benefit from resolving the stratosphere at depth, as the variability of the stratosphere is not only 756 affected by the lower atmosphere and surface climate, but also by intrinsic interactions (e.g. 757 Manzini et al., 2014, Domeisen et al., 2020 a,b, Scaife et al., 2022). The quasi-biennial 758 oscillation (QBO), the polar vortex variability, and associated major sudden stratospheric 759 warmings (MSSW) are key processes in this respect. 760 The QBO is an important component of the Earth's climate, controlling equatorial zonal winds 761 and temperature deviations from the global mean. Its teleconnections to surface climate occur 762 in various pathways (Gray et al., 2018). In the tropics, a link between the tropical stratosphere 763 and the MJO has been revealed as the phase of the QBO modulates the MJO (e.g. Martin et al., 2021). In addition, the QBO modulates the winter stratospheric polar vortex in the Northern 764 765 Hemisphere, which has implications for the troposphere (Holton and Tan, 1982). Both the QBO 766 and the variability of the stratospheric polar vortex are examples of predictability originating 767 in the stratosphere. 768 The observed QBO is characterized by descending alternating easterly and westerly jets in the tropical stratosphere, shown by the zonally averaged zonal wind (Fig. 17a). These jets are even 769 770 more pronounced in the wind anomalies, shown as deviations from the long-term average (Fig. 771 17d). In the ICON XPP 160/40 configuration, with 90 vertical levels, the descending winds are 772 weak easterly winds with a high periodicity compared to observations (Fig. 17b). For the higher 773 resolution 80/20 with an increased number of vertical levels, a QBO is present, although the 774 amplitudes still appear smaller than observations, and the frequency is still higher than 775 observed (Fig. 17c,f). The zonal wind anomalies emphasize that ICON XPP is capable of 776 developing spontaneous QBO phases (Fig. 17e,f). However, in 160/20 with 90 vertical levels, 777 the QBO is more disruptive and not well established (Fig. 17e). In agreement with previous 778 findings, an increase of the number of vertical levels improves the representation of the QBO 779 (Fig. 17e,f). The long-term mean equatorial zonal mean wind is characterized by strong easterly 780 winds, which can be seen in the resulting profile at about 20 km height in the historical 781 simulations of ICON XPP. These easterly winds can act as a permanent wave filter for vertical 782 wave propagation, resulting in a perturbed wave forcing above that height, hindering the QBO 783 development in ICON. The reason for the development of this easterly jet is unclear, but seems 784 to be connected on the horizontal resolution.

Developments in recent decades have shown that seasonal and long-range climate predictions

In atmosphere-only experiments (160 km, 130 level), the frequency of the QBO phases is improved Niemeier et al. (2024). In their experiments the QBO is well established. In addition, the stratospheric transport is well represented, and, consequently, the transport of the water vapour cloud after the Honga Tonga eruption is very close to observations. These changes have not yet been applied to the presented coupled configurations.




Figure 17: Zonal mean zonal wind averaged between 5° S and 5° N in a) ERA5, b) 160/40 with 90 vertical levels (L90) and c) 80/20 with 130 vertical levels (L130) and d), e), f) the corresponding deviation of the long-term mean (1979-2008). Here the period 1979-1989 is shown. Units are in [m s⁻¹].

In the extra-tropics, the northern hemispheric stratospheric polar vortex is a key element of the troposphere-stratosphere system. However, several factors - among others volcanic eruptions, ENSO events, the MJO and the 11-year solar cycle - influence the upward propagation of large-scale Rossby waves from the troposphere that affect the variability of the polar vortex, and make their complete description difficult. The tropospheric circulation in turn changes after weak stratospheric vortex events - namely major sudden stratospheric warmings (MSSW). An MSSW event, defined as reversal of the zonal mean zonal wind from westerlies to easterlies at 60°N at 10 hPa accompanied by a polar stratospheric temperature increase, is usually followed by a weakening and a shift in the mid-latitude tropospheric jet (Scaife et al., 2022 and references therein). These changes have a similar time scale to the changes in the lower stratosphere and thus enable an extension of the predictability beyond the deterministic limit of weather forecasts.

The variability of the winter northern hemispheric stratospheric polar vortex shows for example at least 8 major sudden stratospheric warmings during 2000 and 2010 in ERA5 (Fig. 18a). This period, in which the high-frequency output is available, is characterised by an increased occurrence of MSSW events, compared to 5 to 6 events in previous decades. Both the 160/40 and 80/20 configurations exhibit a similar number of stratospheric warmings as ERA5 (Fig. 18b, c). Although 80/20 is not explicitly tuned for the stratosphere, the time series indicate that the northern hemispheric polar vortex exhibits comparable variations as in observations. Further analyses like the differentiation between vortex split and displacement events, the seasonal cycle, the correlation of the eddy heat fluxes at 100 hPa with the vortex variability and the temperature anomaly, or the surface impact are necessary in order to compare the dynamics of the generated MSSW frequency in ICON XPP with observations (e.g. Charlton et al., 2007).

823

824

825

826

827828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848849

850

Figure 18: Daily zonal mean zonal wind at 60° N, 10 hPa for a) ERA5, b) 160/40 and c) 80/20. For b) and c) high-frequency output is used. Here, the period 2000/2001-2009/2010 is used for ERA5 and ICON XPP. Units are [m s21 s⁻¹].

5. Discussion and Conclusion ICON XPP is a newly developed Earth System model configuration based on the ICON modeling framework. It merges accomplishments from the recent operational numerical weather prediction model (ICON NWP) with well-established climate components for the ocean, land and ocean-biogeochemistry into a new Earth System model configuration. Here, we discussed two baseline configurations which serve as a starting point for accommodating ICON for Earth System predictions and projections, and future model development. ICON XPP in the presented configurations reaches typical targets of a coupled climate simulation, such as a pre-industrial stable climate equilibrium with radiation balance and a target global mean temperature. Though the presented configurations share some long-standing biases in coupled models, such as the warm biases in the coastal upwelling regions, the overall fidelity of ICON XPP fits in the CMIP6 ensemble, as diagnosed by a few key parameters. This is noteworthy since a major newly implemented component is the atmospheric model component ICON NWP, originally designed for numerical weather prediction, which is tested here for the first time in a coupled Earth System configuration. Furthermore, the climate sensitivity, albeit weak, fits within the assessed range of the CMIP6 models, and creates confidence in ICON XPP projections. The simulated trends of global temperature, close to observations, underline the model's suitability to simulate various climate scenarios. The model configurations are able to capture the principal features of coupled circulations in the tropics. A prominent example is ENSO, which reveals typical characteristics and dynamics known from observations, in both configurations. We highlighted the use of a more

The model configurations are able to capture the principal features of coupled circulations in the tropics. A prominent example is ENSO, which reveals typical characteristics and dynamics known from observations, in both configurations. We highlighted the use of a more sophisticated evaluation of ENSO, by not only looking at certain characteristics (amplitude, spectra, skewness etc.), but also considering the ENSO dynamics (feedbacks) and its link to the mean bias. Although ENSO amplitudes and basic feedbacks appear weak, the overall fidelity of ENSO in ICON XPP fits within the CMIP6 models. Further examples of key processes in the tropics are the tropical waves and Madden-Julian Oscillation, which - analyzed by the wavenumber-frequency analysis - are captured quite well in both configurations. In addition, ICON XPP is capable of developing spontaneous QBO phases, which clearly benefits from the higher vertical resolution in the 80/20 configuration.

851 An outstanding result of the current evaluation is the state of the northern-hemisphere extra-852 tropical dynamics. Here, ICON XPP reveals a strong reduction of the tropospheric zonal mean 853 zonal wind biases, and the location of the mean jets are placed close to what is found in 854 observations. A closer examination of the synoptic-scale eddies reveals that ICON XPP is able 855 to depict the shape and magnitude of the transfer of momentum onto the mean flow close to 856 what is found in ERA5. The momentum transfer leads to a northeastward elongation of the 857 mean jet in ICON XPP, whereas predecessor model generations reveal a strong zonal 858 distribution. This could have consequences for the storm tracks and their downstream impacts, 859 which are known to exhibit a biased southern pathway in the ICON XPP precursors. We 860 hypothesize that this improvement is linked to the enhanced accuracy in resolving synoptic disturbances within the ICON NWP model. 861 862 However, the current configurations are characterized by some strong biases with global 863 implications. These include a warm bias of up to 5°C in the Southern Ocean, associated with little sea-ice. Accompanied with this are a particularly deep ocean mixed layer at the Antarctic 864 865 boundaries near the Weddell Sea and strong biases in the atmospheric net radiation and cloud 866 covers (not shown). Errors of this magnitude inevitably lead to the need to adjust the model. In 867 order to achieve the global mean temperature target, it was necessary to counterbalance the 868 Southern Ocean warming by adjustment of cloud parameters, e.g. reducing the entrainment 869 rate. Further, the Southern Ocean plays an important role in remote regions of the climate 870 system. Recent studies reveal the global role of the observed Southern Ocean cooling trends 871 and their teleconnections, such as to tropical regions and the southeast Pacific cooling (Kang 872 et al., 2023). However, many climate models notoriously fail to capture the recent SST trend 873 in the Southern Ocean. Also, all coupled model and climate prediction systems are not able to 874 capture the Pacific cooling trend with consequences on forecasting the Pacific climate such as 875 ENSO (e.g. l'Heureux et al., 2022). Therefore, an improvement of the Southern Ocean climate 876 may be of great relevance for remote regional climate and their predictions. 877 The tropical precipitation distribution reveals the long-standing double ITCZ, as found in many 878 CMIP6-like models. In our configurations, however, the magnitudes are relatively large 879 compared to the CMIP6 ensemble. Such a bias ultimately imposes an influence on regional and 880 global climate. An example is ENSO, which provides a strong relationship to the precipitation 881 bias in the current ICON XPP configuration. Further, a strong dry bias in the Amazonian region 882 is found in the current configurations. Such bias imposes an impact on the modeling of land

883 vegetation and the global carbon cycle. The reasons for the tropical precipitation bias are yet 884 unclear. However, since during the tuning process the precipitation distribution has not 885 received much attention, we expect some improvements in subsequent versions of ICON XPP. 886 ICON XPP forms the basis for future developments in the areas of climate predictions and 887 projections. Some initiatives have already been established for this purpose. One project was 888 initiated to support ICON XPP's preliminary research into climate predictions. Here, data assimilation methods and hindcasts are being tested with ICON XPP, as well as their 889 890 possibilities for special applications. The aim is, among others, to use ICON XPP for 891 operational climate predictions. Another initiative prepares ICON XPP as a national 892 contribution to CMIP7. For this, ICON XPP will be more thoroughly tuned with respect to the 893 aforementioned biases. In addition, corresponding DECK experiments with CMIP7 forcing 894 will be prepared and carried out, and their data disseminated. A basic requirement for both 895 initiatives is that the model is able to calculate as many model years and ensemble members as possible, in as little real time as possible. The high runtime performance of the current 896 897 configurations with throughput of ~80 simulated years per day (SYPD, 100 nodes) for 160/40 898 and ~45 SYPD (64 nodes) for 80/20 - run on a CPU-partition of the DKRZ HPC - meet this 899 requirement. 900 In summary, ICON XPP is an Earth System model configuration, able to run long integrations 901 and large-ensemble experiments, making it suitable for climate predictions and projections, 902 and for climate research for which a large throughput is required.

903

904 Acknowledgments

905 We would like to acknowledge the German Climate Computing Center (DKRZ) for providing 906 the computing facilities used to run the simulations. This research was supported by the 907 German Ministry of Education and Research (BMBF) by the project Coming Decade (WM, 908 DY - grant 01LP2327E) and CAP7 (MS - grant 01LP2401C). AS received funding from 909 DWD's "Innovation Programme for Applied Researches and Developments" IAFE ICON-910 Seamless VH 4.7. CAK received funding from the ETH Postdoctoral Fellowship programme, her model tuning work/GPU port testing was supported by a grant from the Swiss National 911 912 Supercomputing Center (CSCS) under the project ID s1283 on Alps. HP has received funding 913 from the European Union's Horizon Europe research and innovation programme under grant 914 agreement No 101081460. Views and opinions expressed are, however, those of the author(s)

only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. UN received support from the Deutsche Forschungsgemeinschaft (DFG) Research Unit VolImpact (FOR2820, grant no. 398006378) within the project VolARC and simulations on stratosphere and QBO tuning have been performed at DKRZ using resources granted by its Scientific Steering Committee (WLA, under project ID bm0550). We thank Marco Giorgetta for reviewing the manuscript before submission.

922

923

915

916

917

918

919

920

921

Code and Data Availability Statement

924 The run scripts and manual used to run ICON XPP for this study are available in the Open 925 Research Data Repository of the Max Planck Society (https://doi.org/10.17617/3.UUIIZ8) 926 (Müller et al., 2025). ICON is available to the community under a permissive open source 927 licence (BSD-3C). Please follow the instructions on the ICON web-page (https://www.icon-928 model.org/). ERA5 data (Hersbach et al., 2020) was downloaded from the Copernicus Climate 929 Change Service (2019a, 2019b). The results contain modified Copernicus Climate Change 930 Service information 2025. Neither the European Commission nor ECMWF is responsible for 931 any use that may be made of the Copernicus information or data it contains. Figures 6a, 6b, 7, 932 and 8 of this study have been created with the Earth System model Evaluation Tool (ESMValTool; Righi et al., 2020; Andela et al., 2024a) and its core dependency ESMValCore 933 934 (Andela et al., 2024b). ESMValTool has recently been extended to be able to process ICON 935 XPP output without any model postprocessing (Schlund et al., 2023). CMIP6 model output 936 required to reproduce the analyses of this paper is available through the Earth System Grid 937 Foundation (ESGF; https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/, last access: 19 February 2025). ESMValTool can automatically download these data if requested (see 938 939 https://docs.esmvaltool.org/projects/ESMValCore/en/v2.11.1/quickstart/configure.html#esgf-940 configuration, last access: 19 February 2025). Observational/reanalysis datasets are not 941 distributed with ESMValTool that is restricted to the code as open source software, but 942 ESMValTool provides a collection of scripts with downloading and processing instructions to 943 recreate all observational/reanalysis datasets used for Figures 6a, 6b, and 7 (see 944 https://docs.esmvaltool.org/en/latest/input.html#observations, last access: 19 February 2025).

945

946

947 Conceptualization: WM, TvP, AS, SL. Writing - original draft: WM, TvP, AS, SL, FC. 948 Visualization: TvP, AS, SL, MS, DY, RB, TS. Model component development: VB, NB, FC, 949 KF, VG, HH. SH, MH, TI, JJ, MK, PK, LK, CK, JK, KCM, UN, HP, IP, TR, TS, RW. 950 Supervision: JM, RP, BF. 951 Competing Interests 952 The contact author has declared that none of the authors has any competing interests. 953 954 955 956 957 958 959 REFERENCES 960 Adcroft, A., and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modelling, 7(3-4), 269-284, 2004. 961 962 Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Chiu, L., Xie, P.-P., Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., Gu, G., and NOAA CDR Program: Global 963 964 Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 965 (Monthly), https://doi.org/10.7289/V56971M6, 2017. Andela, B., Broetz, B., de Mora, L., Drost, N., Eyring, V., Koldunov, N., Lauer, A., Mueller, 966 967 B., Predoi, V., Righi, M., Schlund, M., Vegas-Regidor, J., Zimmermann, K., Adeniyi, K., 968 Arnone, E., Bellprat, O., Berg, P., Bock, L., Bodas-Salcedo, A., Caron, L.-P., Carvalhais, N., 969 Cionni, I., Cortesi, N., Corti, S., Crezee, B., Davin, E. L., Davini, P., Deser, C., Diblen, F., Docquier, D., Dreyer, L., Ehbrecht, C., Earnshaw, P., Gier, B., Gonzalez-Reviriego, N., 970 Goodman, P., Hagemann, S., Hardacre, C., von Hardenberg, J., Hassler, B., Heuer, H., 971 972 Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Kuehbacher, B., Lledó, L., Lejeune, Q., 973 Lembo, V., Little, B., Loosveldt-Tomas, S., Lorenz, R., Lovato, T., Lucarini, V., Massonnet, 974 F., Mohr, C. W., Amarjiit, P., Pérez-Zanón, N., Phillips, A., Russell, J., Sandstad, M., Sellar, 975 A., Senftleben, D., Serva, F., Sillmann, J., Stacke, T., Swaminathan, R., Torralba, V., Weigel, 976 K., Sarauer, E., Roberts, C., Kalverla, P., Alidoost, S., Verhoeven, S., Vreede, B., Smeets, S.,

- 977 Soares Siqueira, A., Kazeroni, R., Potter, J., Winterstein, F., Beucher, R., Kraft, J., Ruhe, L.,
- 978 Bonnet, P., and Munday, G.: ESMValTool, tps://doi.org/10.5281/zenodo.3401363, 2024a.
- 979 Andela, B., Broetz, B., de Mora, L., Drost, N., Eyring, V., Koldunov, N., Lauer, A., Predoi,
- 980 V., Righi, M., Schlund, M., Vegas-Regidor, J., Zimmermann, K., Bock, L., Diblen, F.,
- Dreyer, L., Earnshaw, P., Hassler, B., Little, B., Loosveldt-Tomas, S., Smeets, S.,
- 982 Camphuijsen, J., Gier, B. K., Weigel, K., Hauser, M., Kalverla, P., Galytska, E., Cos-Espuña,
- 983 P., Pelupessy, I., Koirala, S., Stacke, T., Alidoost, S., Jury, M., Sénési, S., Crocker, T.,
- 984 Vreede, B., Soares Siqueira, A., Kazeroni, R., Hohn, D., Bauer, J., Beucher, R., Benke, J.,
- 985 Martin-Martinez, E., and Cammarano, D.: ESMValCore,
- 986 https://doi.org/10.5281/zenodo.3387139, 2024b.
- 987 Athanasiadis, P. J., Yeager, S., Kwon, Y. O, Belucci, A., Smith, D. W., and Tibaldi, S.:
- 988 Decadal predictability of North Atlantic blocking and the NAO. npj Clim Atmos Sci, 3, 20,
- 989 doi:10.1038/s41612-020-0120-6, 2020.
- Bayr, T., Latif, M., Dommenget, D., Wengel, C., J. Harlaß, and Park, W.: Mean-state
- 991 dependence of ENSO atmospheric feedbacks in climate models. Clim Dyn 50, 3171–3194,
- 992 https://doi.org/10.1007/s00382-017-3799-2, 2018.
- 993 Beobide-Arsuaga, G., Düsterhus, A., Müller, W. A., Barnes, E. A., and Baehr, J.: Spring
- 994 regional sea surface temperatures as a precursor of European summer heatwaves,
- 995 Geophysical Research Letters, 50, e2022GL100727, https://doi.org/10.1029/2022GL100727,
- 996 2023.
- 997 Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez, L., and
- 998 Müller, W. A.: Decadal predictions of the probability of occurrence for warm summer
- 999 temperature extremes. Geophys. Res. Lett., 46, 14042-14051, doi:10.1029/2019GL08538546,
- 1000 2019.
- 1001 Branstator, G.: Circumglobal Teleconnections, the Jet Stream Waveguide, and the North
- 1002 Atlantic Oscillation. J. Climate, 15, 1893–1910, https://doi.org/10.1175/1520-
- 1003 0442(2002)015<1893:CTTJSW>2.0.CO;2, 2002.
- 1004 Canadell, J.G., et al.: Global Carbon and other Biogeochemical Cycles and Feedbacks. In
- 1005 Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
- 1006 Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 673–816,
- 1007 doi:10.1017/9781009157896.007, 2021.

- 1008 Capotondi, A., Deser, C., Phillips, A. S., Okumura, Y., & Larson, S. M: ENSO and Pacific
- 1009 decadal variability in the Community Earth System model version 2. Journal of Advances in
- 1010 Modeling Earth Systems, 12(12), doi:10.1029/2019MS002022, 2020.
- 1011 Cai, W. J., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J. S., Yu, J., Stuecker. M. F.,
- Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y.,
- 1013 Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N., Lin, X., Luo, J.-J., Martín-Rey, M.,
- 1014 Ruprich-Robert, Y., Wang, G., Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim,
- 1015 G.-I., Kim, C.-E., Kim, S., Kim, J.-H., and Chang, P.: Pantropical climate interactions.
- 1016 Science, 363 (6430), 944-+, doi:10.1126/science.aav4236, 2019.
- 1017 Charlton, A.J., L. M., Polvani, J., Perlwitz, F., Sassi, E., Manzini, K., Shibata, S., Pawson, J.
- 1018 E., Nielsen, and D., Rind: A new look at stratospheric sudden warmings. Part II: Evaluation
- 1019 of numerical model simulations. J. Climate, 10, 470-488, doi:10.1175/JCLI3994.1, 2007.
- 1020 Copernicus Climate Change Service: ERA5 monthly averaged data on pressure levels from
- 1021 1940 to present, https://doi.org/10.24381/CDS.6860A573, 2019a.
- 1022 Copernicus Climate Change Service: ERA5 monthly averaged data on single levels from
- 1023 1940 to present, https://doi.org/10.24381/CDS.F17050D7, 2019b.
- 1024 Doblas-Reyes, F. J., Pavan, V. and Stephenson, D.B.: The skill of multi-model seasonal
- forecasts of the North Atlantic Oscillation. Climate Dyn., 21, 501-514, 2003.
- Dobrynin, M., Domeisen, D. I., Müller, W. A., Bell, L., Brune, S., Bunzel, F., Düsterhus, A.,
- 1027 Fröhlich K. Pohlmann, H. and Baehr, J.: Improved teleconnection-based dynamical seasonal
- 1028 predictions of boreal winter. Geophysical Research Letters, 45(8), 3605–3614,
- 1029 https://doi.org/10.1002/2018GL077209, 2018.
- 1030 Dobrynin, M., Düsterhus, A., Fröhlich, K., Athanasiadis, P., Ruggieri, P., Müller, W. A., and
- 1031 Baehr, J: Hidden potential in predicting wintertime temperature anomalies in the Northern
- Hemisphere. Geophysical Research Letters, 49, e2021GL095063,
- 1033 https://doi.org/10.1029/2021GL095063, 2022.
- Doms, G., and Schättler, U.: The nonhydrostatic limited-area model LM (Lokal-Modell) of
- 1035 DWD. Part I: Scientific documentation. Deutscher Wetterdienst Rep. LM F90 1.35, 172 pp.
- 1036 [Available from Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany],
- 1037 2004.

- 1038 Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., and Chereskin, T. K.: Mean
- 1039 Antarctic Circumpolar Current transport measured in Drake Passage, Geophys. Res. Lett., 43,
- 1040 11760–11767, https://doi.org/10.1002/2016GL070319, 2016.
- 1041 Düsterhus, A., and Brune, S: The effect of initialisation on 20 year multi-decadal climate
- 1042 predictions. Clim Dyn 62, 831–840, https://doi.org/10.1007/s00382-023-06941-1, 2024.
- Dunne, J. P., Hewitt, H. T., Arblaster, J., Bonou, F., Boucher, O., Cavazos, T., Durack, P. J.,
- Hassler, B., Juckes, M., Miyakawa, T., Mizielinski, M., Naik, V., Nicholls, Z., O'Rourke, E.,
- 1045 Pincus, R., Sanderson, B. M., Simpson, I. R., and Taylor, K. E.: An evolving Coupled Model
- 1046 Intercomparison Project phase 7 (CMIP7) and Fast Track in support of future climate
- 1047 assessment, EGUsphere, https://doi.org/10.5194/egusphere-2024-3874, 2024.
- 1048 Elizalde, A., Romero-Mujalli, G., Stacke, T., and Hagemann, S.: Modeling Total Phosphorus
- 1049 Transport in the European Riverine System: Parameterization and Projections under Climate
- and Socioeconomic Scenarios, EGUsphere, https://doi.org/10.5194/egusphere-2024-3645,
- 1051 2025.
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K.
- 1053 E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
- design and organization. Geoscientific Model Development., 9, 1937–1958,
- 1055 https://doi.org/10.5194/gmd-9-1937-2016, 2016.
- 1056 Fieg, K., Gerdes, R., Fahrbach, E., Beszczynska-Möller, A., and Schauer, U.: Simulation of
- 1057 oceanic volume transports through Fram Strait 1995–2005, Ocean Dynam., 60, 491–502,
- 1058 https://doi.org/10.1007/s10236-010-0263-9, 2010.
- 1059 Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T.
- 1060 Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth's Energy
- 1061 Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical
- 1062 Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
- 1063 Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.
- 1064 Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K.
- Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and
- 1066 B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,
- 1067 NY, USA, pp. 923–1054, doi: 10.1017/9781009157896.009.

- 1068 Frajka-Williams, E., Ansorge ,I.J., Baehr, J., Bryden, H.L., Chidichimo, M.P., Cunningham,
- 1069 S.A., Danabasoglu, G., Dong, S., Donohue, K.A., Elipot, S., Heimbach, P., Holliday, N.P.,
- Hummels, R., Jackson, L.C., Karstensen, J., Lankhorst, M., Le Bras, I.A., Lozier, M.S.,
- 1071 McDonagh, E.L., Meinen, C.S., Mercier, H., Moat, B.I., Perez, R.C., Piecuch, C.G., Rhein,
- 1072 M., Srokosz, M.A., Trenberth, K.E., Bacon, S., Forget, G., Goni, G., Kieke, D., Koelling, J.,
- Lamont, T., McCarthy, G.D., Mertens, C., Send, U., Smeed, D.A., Speich, S., van den Berg,
- 1074 M., Volkov, D. and Wilson, C.: Atlantic Meridional Overturning Circulation: Observed
- 1075 Transport and Variability. Front. Mar. Sci. 6:260. doi: 10.3389/fmars.2019.00260, 2019.
- 1076 Fröhlich K., Dobrynin, M., Isensee, K., Gessner, C., Paxian, A., Pohlmann, H., Haak,
- 1077 H., Brune, S., Früh, B., and Baehr, J.: The German Climate Forecast System: GCFS. J.
- 1078 Advances in Modeling Earth Systems, 13, https://doi.org/10.1029/2020MS002101, 2020.
- 1079 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A.,
- Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C.,
- Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R.,
- Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker,
- 1083 M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
- for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
- 1085 <u>https://doi.org/10.1175/jcli-d-16-0758.1</u>, 2017.
- 1086 Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger, C.,
- 1087 Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast, S.,
- 1088 Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., Silvers, L., Wan. H.,
- 1089 Zängl, G., and Stevens, B.: ICON-A, the Atmosphere Component of the ICON Earth System
- model: I. Model Description, Journal of Advances in Modeling Earth Systems, vol. 10, no. 7,
- 1091 pp. 1613–1637, doi:10.1029/2017MS001242, 2018.
- 1092 Giorgetta, M. A., Manzini, E., and Roeckner, E.: Forcing of the quasi-biennial oscillation
- from a broad spectrum of atmospheric waves, Geophysical Research Letters, vol. 29, no. 8,
- 1094 Art. no. 1245, doi:10.1029/2002GL014756, 2002.
- 1095 Gordon, A. L., Sprinthall, J., Van Aken, H. M., Susanto, D., Wijffels, S., Molcard, R., Field,
- 1096 A., Pranowo, W., and Wirasantosa, S.: The Indonesian throughflow during 2004–2006 as
- observed by the INSTANT program, Dyn. Atmos. Oceans, 50, 115–128,
- 1098 https://doi.org/10.1016/j.dynatmoce.2009.12.002, 2010.

- 1099 Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface
- impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247,
- 1101 https://doi.org/10.5194/acp-18-8227-2018, 2018.
- 1102 Gregory, J. M.: A new method for diagnosing radiative forcing and climate sensitivity,
- 1103 Geophysical Research Letters, vol. 31, no. 3, Art. no. L03205, doi:10.1029/2003GL018747,
- 1104 2004.
- 1105 Guilyardi, E., Capotondi, A., Lengaigne, M., Thual, S. and Wittenberg, A.T.: ENSO
- 1106 Modeling. In El Niño Southern Oscillation in a Changing Climate (eds M.J. McPhaden, A.
- 1107 Santoso and W. Cai), https://doi.org/10.1002/9781119548164.ch9, 2020.
- 1108 Gulev, S.K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S, Gong,
- D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S.
- 1110 L., Trewin, B., von Schuckmann, K., and Vose, R. S.: Changing State of the Climate System.
- 1111 In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to
- the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2021.
- 1113 [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y.
- 1114 Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.
- 1115 Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University
- 1116 Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422, doi:
- 1117 10.1017/9781009157896.004.
- 1118 Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann,
- 1119 N., Haak, H., and Stössel, A.: Max Planck Institute Earth System model (MPI-ESM1.2) for
- the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12,
- 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019.
- Hagemann, S., Ho-Hagemann, H.T.M., and Hanke, M.: The Hydrological Discharge Model -
- a river runoff component for offline and coupled model applications (5.2.3). Zenodo,
- 1124 https://doi.org/10.5281/zenodo.14179917, 2023.
- 1125 Hagemann, S., Stacke, T., and Ho-Hagemann, H.T.M.: High resolution discharge simulations
- over Europe and the Baltic Sea catchment. Front. Earth Sci., 8:12. doi:
- 1127 10.3389/feart.2020.00012, 2020.

- 1128 Hajima, T., Kawamiya, M., Ito, A., Tachiiri, K., Jones, C., Arora, V., Brovkin, V., Séférian,
- 1129 R., Liddicoat, S., Friedlingstein, P., and Shevliakova, E.: Consistency of global carbon budget
- 1130 between concentration- and emission-driven historical experiments simulated by CMIP6
- Earth system models and suggestion for improved simulation of CO₂ concentration,
- 1132 EGUsphere, https://doi.org/10.5194/egusphere-2024-188, 2024.
- Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0: new aspects for
- coupling software in Earth system modelling, Geoscientific Model Development, 9(8), 2755–
- 1135 2769, 2016.
- Hansen, B., Østerhus, S., Turrell, W. R., Jónsson, S., Valdimarsson, H., Hátún, H., and Olsen,
- 1137 S. M.: The Inflow of Atlantic Water, Heat, and Salt to the Nordic Seas Across the Greenland-
- 1138 Scotland Ridge, pp. 15–43, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-
- 1139 4020-6774-7_2, 2008.
- Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao: The Pathfinder Atmospheres-
- 1141 Extended AVHRR Climate Dataset. Bull. Amer. Meteor. Soc., 95, 909–922,
- 1142 <u>https://doi.org/10.1175/BAMS-D-12-00246.1</u>, 2014.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas,
- J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,
- Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P.,
- 1146 Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A.,
- Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P.,
- Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and
- 1149 Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological
- 1150 Society, 146, 1999–2049, https://doi.org/https://doi.org/10.1002/qj.3803, 2020.
- Hettrich, S., Müller, W. A., Cubasch, U., Feldmann, H., Früh, B., Grieger, J, Kadow, C,
- Kaspar, F, Kottmeier, C., Paxian, A., Polkova, I, Scheffler, J., Stammer, D., Tiedje, B.,
- 1153 Ulbrich, U., Vamborg, F. S. E., and Marotzke, J.: MiKlip turning a scientific concept into a
- pre-operational system for decadal climate predictions, PROMET, 104(6),
- 1155 https://doi.org/10.5676/dwd_pub/promet_104_06, 2021.
- 1156 Hogan, R. J., and Bozzo, A.: A flexible and efficient radiation scheme for the ECMWF
- model. Journal of Advances in Modeling Earth Systems, 10, 1990–2008,
- 1158 https://doi.org/10.1029/2018MS001364, 2018.

- Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J.,
- Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R.,
- Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M.,
- Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D.,
- Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T.,
- Mehlmann, C., Mieslinger, T., Naumann, A. K., Paccini, L., Peinado, A., Praturi, D. S.,
- Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F.,
- 1166 Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C. C., von Storch, J.-S., Vogel,
- 1167 R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J., and Stevens, B.: ICON-Sapphire:
- simulating the components of the Earth system and their interactions at kilometer and
- subkilometer scales, Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-
- 1170 2023, 2023.
- Holton, J. R. and Tan, H.-C.: The Quasi-Biennial Oscillation in the Northern Hemisphere
- Lower Stratosphere", Journal of the Meteorological Society of Japan, vol. 60, no. 1, pp. 140–
- 1173 148, 1982. doi:10.2151/jmsj1965.60.1_140.
- Hoskins, B. J., James, I. N., and White, G. H.: The shape, propagation and mean-flow
- interaction of large-scale weather systems. Journal of Atmospheric Sciences, 40, 1595–1612,
- 1176 1983.
- 1177 Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., & Núñez-Riboni, I.: Global
- 1178 ocean biogeochemistry model HAMOCC: Model architecture and performance as component
- of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of
- Advances in Modeling Earth Systems, 5(2), 287–315.
- 1181 https://doi.org/10.1029/2012ms000178, 2013.
- 1182 IPCC, 2023: Sections. In: Climate Change: Synthesis Report. Contribution of Working
- 1183 Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on
- 1184 Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva,
- 1185 Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647, 2023.
- Jochumsen, K., Quadfasel, D., Valdimarsson, H., and Jónsson, S.: Variability of the Denmark
- 1187 Strait overflow: Moored time series from 1996–2011, J. Geophys. Res. 117, C12003,
- 1188 https://doi.org/10.1029/2012JC008244, 2012.

- Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F.,
- 1190 Crüger, T., De-Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S.,
- Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U.,
- Müller, W.A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D., A., Raddatz, T.,
- 1193 Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R.,
- 1194 Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B.,
- 1195 Marotzke, J., Claussen, M. "The ICON Earth System Model Version 1.0", Journal of
- Advances in Modeling Earth Systems, vol. 14, no. 4, Art. no. e2021MS002813,
- 1197 doi:10.1029/2021MS00281310.1002/essoar.10507989.1, 2022.
- 1198 Korn, P.: Formulation of an unstructured grid model for global ocean dynamics. Journal of
- 1199 Computational Physics, 339, 525–552, https://doi.org/10.1016/j.jcp.2017.03.009, 2017.
- 1200 Korn, P., Brüggemann, N.; Jungclaus, J. H.; Lorenz, S. J.; Gutjahr, O.; Haak, H.; Linardakis,
- 1201 L.; Mehlmann, C.; Mikolajewicz, U.; Notz, D.; Putrasahan, D. A.; Singh, V.; von Storch, J. -
- 1202 S.; Zhu, X.; Marotzke, J.: ICON-O: The Ocean Component of the ICON Earth System
- 1203 Model—Global Simulation Characteristics and Local Telescoping Capability, Journal of
- 1204 Advances in Modeling Earth Systems, vol. 14, no. 10, Art. no. e2021MS002952,
- 1205 doi:10.1029/2021MS002952, 2022.
- 1206 Kruschke, T., Rust, H. W., Kadow, C., Müller, W. A., Pohlmann, H., Leckebusch, G. C., and
- 1207 Ulbrich, U.: Probabilistic evaluation of decadal prediction skill regarding Northern
- 1208 Hemisphere winter storms. Met. Zeitschrift, 25, 721-738 doi:10.1127/metz/2015/0641, 2016.
- 1209 Kushnir Y., Scaife, A.A., Arritt, R. et al.: Towards Operational Predictions of the Near-Term
- 1210 Climate. Nature Climate Change, 9, 94–101, https://doi.org/10.1038/s41558-018-0359-7,
- 1211 2019.
- 1212 Leuenberger, D., Koller, M., Fuhrer, O., and Schär, C.: A Generalization of the SLEVE
- 1213 Vertical Coordinate, Monthly Weather Review, vol. 138, no. 9, AMS, pp. 3683–3689,
- 1214 doi:10.1175/2010MWR3307.1, 2010.
- 1215 l'Heureux M., Tippett, M. K., and Wang, W.: Prediction challenges from errors in tropical
- 1216 Pacific sea surface temperature trends. Frontiers in Climate, 4.
- 1217 doi:103389/fclim.2022.837483, 2022.
- 1218 Li, H., Ilyina, T., Müller, W. A., and Sienz, F.: Decadal predictions of the North Atlantic CO₂
- 1219 uptake. Nat Commun., 11076, https://doi.org/10.1038/ncomms11076, 2016.

- 1220 Li, H., Ilyina, T., Loughran, T., Spring, A., and Pongratz, J.: Reconstructions and predictions
- of the global carbon budget with an emission-driven Earth system model, Earth Syst.
- 1222 Dynam., 14, 101–119, 2023.
- 1223 Liao, H., Cai, Z., Guo, J., and Song, Z.: Effects of ITCZ Poleward Location Bias on ENSO
- 1224 Seasonal Phase-Locking Simulation in Climate Models. Journal of Climate, 36(15), 5233-
- 1225 5249. https://doi.org/10.1175/JCLI-D-22-0891.1, 2023.
- 1226 Luo, F., Ying, J., Liu, T. and Chen, D.: Origins of Southern Ocean warm sea surface
- temperature bias in CMIP6 models, npj Climate and Atmospheric Science 6:127,
- 1228 https://doi.org/10.1038/s41612-023-00456-6, 2023.
- Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L.,
- 1230 Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's Radiant Energy System
- 1231 (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data
- 1232 Product, Journal of Climate, 31, 895–918, https://doi.org/10.1175/jcli-d-17-0208.1, 2018.
- 1233 Maerz, J., Six, K. D., Stemmler, I., Ahmerkamp, S., and Ilyina, T.: Microstructure and
- 1234 composition of marine aggregates as co-determinants for vertical particulate organic carbon
- transfer in the global ocean. Biogeosciences, 17(7), 1765–1803, https://doi.org/10.5194/bg-
- 1236 <u>17-1765-2020</u>, 2020.
- 1237 Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., et al.:
- 1238 The Max Planck Institute Grand Ensemble: Enabling the exploration of climate system
- variability. Journal of Advances in Modeling Earth Systems, 11, 2050–2069.
- 1240 https://doi.org/10.1029/2019MS001639, 2019.
- 1241 Manzini, E., et al.: Northern winter climate change: Assessment of uncertainty in CMIP5
- 1242 projections related to stratosphere-troposphere coupling, J. Geophys. Res. Atmos., 119, 7979–
- 1243 7998, doi:10.1002/2013JD021403, 2014.
- Marotzke, J., Müller, W. A., Vamborg, F. S. E., Becker, P., Cubasch, U., Feldmann, H.,
- 1245 Kaspar, F., Kottmeier, C., Marini, C., Polkova, I., Prömmel, K., Rust, H. W., Stammer, D.,
- 1246 Ulbrich, U., Kadow, C., Köhl, A., Kröger, J., Kruschke, T., Pinto, J. G., Pohlmann, H.,
- 1247 Reyers, M., Schröder, M., Sienz, F., Timmreck, C., and Ziese, M.: MiKlip A National
- 1248 Research Project on Decadal Climate Prediction. Bull. Amer. Meteor. Soc., 97, 2379–2394,
- 1249 https://doi.org/10.1175/BAMS-D-15-00184.1, 2016.

- 1250 Martin, Z., Son, S.-W., Butler, A., Hendon, H., Kim, H., Sobel, A., Yoden, S., and Zhang, C.,
- 1251 The influence of the quasi-biennial oscillation on the Madden-Julian oscillation, Nature
- 1252 Reviews Earth and Environment, 2, 477-489, doi: 10.1038/s43017-021-00173-9, 2021.
- 1253 M. Mathis, Logemann, K., Maerz, J., Lacroix, F., Hagemann, S., Chegini, F., Ramme, L.,
- 1254 Ilyina, T., Korn, P., and Schrum, C.: Seamless integration of the coastal ocean in global
- marine carbon cycle modeling, 14,8, doi: 10.1029/2021MS002789, 2022.
- 1256 Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V.,
- 1257 Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta,
- 1258 M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns,
- 1259 T., Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
- 1260 Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz,
- 1261 U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D.,
- 1262 Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M.,
- 1263 Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt,
- 1264 H., Schur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch,
- 1265 J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and
- 1266 Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2)
- and its response to increasing CO₂, J. Adv. Model. Earth Sy., 11, 998–1038,
- 1268 https://doi.org/10.1029/2018MS001400, 2018.
- 1269 Mehlmann, C., and Korn, P.: Sea-ice dynamics on triangular grids. *Journal of Computational*
- 1270 Physics, 428, 110086., 2021.
- 1271 Mehlmann C., Danilov, S., Losch, M., Lemiuex, J. F., Hutterer, N., Richter, T., Plain, P.,
- 1272 Hunke, E. C., and Korn, P.: Simulating Linear Kinematic Features in Viscous-Plastic Sea Ice
- 1273 Models on Quadrilateral and Triangular Grids With Different Variable Staggering, Journal
- 1274 of Advances in Modeling Earth Systems, 10.1029/2021MS002523, 2012.
- 1275 Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R.
- 1276 J. H., Osborn, T. J., Jones, P. D., and Simpson, I. R.: An Updated Assessment of Near-
- 1277 Surface Temperature Change From 1850: The HadCRUT5 Data Set, Journal of Geophysical
- 1278 Research: Atmospheres, 126, https://doi.org/10.1029/2019jd032361, 2021.

- 1279 Müller, W. A., Appenzeller, C. and Schär, C.: Probabilistic seasonal prediction of the winter
- 1280 North Atlantic Oscillation and its impact on near surface temperature, Clim. Dyn., 24, 213-
- 1281 226, 2005.
- Müller, W. A., Baehr, J., Haak, H., Jungclaus, J. H, Kröger, J., Matei, D., Notz, D.,
- 1283 Pohlmann, H, von Storch J.-S., and Marotzke, J.: Forecast skill of multi-year seasonal means
- in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys. Res.
- 1285 Lett., 39, L22707. doi:10.1029/2012GL053326, 2012.
- 1286 Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F.,
- 1287 Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz,
- 1288 D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F., and Marotzke, J.: A higher-resolution
- 1289 version of the Max Planck Institute Earth System Model (MPI-ESM 1.2-HR), J. Adv. Model.
- 1290 Earth Sy., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018.
- 1291 Müller, W. A., B. Früh, P. Korn, R. Potthast, J. Baehr, J.-M. Bettems, G. Bölöni, S. Brienen,
- 1292 K. Fröhlich, J. Helmert, J. Jungclaus, M. Köhler, S. Lorenz, A. Schneidereit, R. Schnur, J.-P.
- 1293 Schulz, L. Schlemmer, C. Sgoff, T. V. Pham, H. Pohlmann, B. Vogel, H. Vogel, R. Wirth, S.
- 1294 Zaehle, G. Zängl, B. Stevens, and J. Marotzke: ICON: Towards vertically integrated model
- 1295 configurations for numerical weather prediction, climate predictions and projections, Bull.
- 1296 Am. Met. Soc, https://doi.org/10.1175/BAMS-D-24-0042.1, 2025.
- 1297 Müller, W. A., Lorenz, S., Pham, T. V., Schneidereit, A., Brokopf, R., Brovkin, V.,
- 1298 Brüggemann, N., Castro-Morales, K., Chegini, F., Dommenget, D., Engels, F., Fröhlich, K.,
- 1299 Früh, B., Gayler, V., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Jungclaus, J., Köhler,
- 1300 M., Korn, P., Kornblueh, L., Kroll, C., Krüger, J., Nabel, J., Niemeier, U., Potthast, R.,
- 1301 Riddick, T., Pohlmann, H., Polkova, I., Riddick, T., Schlund, M., Schnur, R., S., C., Stacke,
- 1302 T., Wirth, R., Yu, D., Zaehle, S., Marotzke, J.: "Source code and scripts for publication "The
- 1303 ICON-based coupled Earth System Model for Climate Predictions and Projections (ICON
- 1304 XPP)"", https://doi.org/10.17617/3.UUIIZ8, Edmond, V3, 2024.
- Nabel, J. E. M., Naudts, S. K., and Pongratz, J.: Accounting for forest age in the tile-based
- dynamic global vegetation model JSBACH4 a land surface model for the ICON-ESM.
- 1307 Geoscientific Model Development, 13, 185–200, https://doi.org/10.5194/gmd-13-185-2020,
- 1308 2020.

- 1309 Nielsen, D.M., Chegini, F., Maerz, J. et al. Reduced Arctic Ocean CO₂ uptake due to coastal
- permafrost erosion. Nat. Clim. Chang. 14, 968–975, https://doi.org/10.1038/s41558-024-
- 1311 <u>02074-3</u>, 2024<u>.</u>
- Niemeier, U., Wallis, S., Timmreck, C., van Pham, T., & von Savigny, C.: How the Hunga
- 1313 Tonga—Hunga Ha'apai water vapor cloud impacts its transport through the stratosphere:
- 1314 Dynamical and radiative effects. *Geophysical Research Letters*, 50, e2023GL106482.
- 1315 <u>https://doi.org/10.1029/2023GL106482</u>, 2023.
- 1316 Nowlin Jr., W. D. and Klinck, J. M.: The physics of the Antarctic Circumpolar Current, Rev.
- 1317 Geophys., 24, 469–491, https://doi.org/10.1029/RG024i003p00469, 1986.
- 1318 Olsen, A., Key, R. M., Van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., et al.: The Global
- 1319 Ocean Data Analysis Project version 2 (GLODAPv2)-an internally consistent data product
- for the world ocean. Earth System Science Data, 8(2), 297–323. https://doi.org/10.5194/essd-
- 1321 <u>8-297-2016</u>, 2016.
- Paulsen, H., Ilyina, T., Six, K. D., & Stemmler, I.:. Incorporating a prognostic representation
- of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC. Journal of
- 1324 Advances in Modeling Earth Systems, 9(1), 438–464.
- 1325 <u>https://doi.org/10.1002/2016ms000737</u>, 2017.
- 1326 Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J., Bayr, T., McGregor,
- 1327 S., McPhaden, M. J., Power, S., Roehrig, R., Voldoire, A.: Evaluating Climate Models with
- the CLIVAR 2020 ENSO Metrics Package. Bull. Amer. Meteor. Soc., 102, E193–E217,
- 1329 https://doi.org/10.1175/BAMS-D-19-0337.1, 2021.
- 1330 Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi, J., and Frey, R.: The
- 1331 MODIS cloud products: algorithms and examples from Terra, IEEE Transactions on
- 1332 Geoscience and Remote Sensing, 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301,
- 1333 2003.
- Pohlmann, H., W. A. Müller, K. Kulkarni, M. Kameswarrao, D. Matei, F. S. E. Vamborg, C.
- 1335 Kadow, S. Illing, J. Marotzke: Improved forecast skill in the tropics in the new MiKlip
- decadal climate predictions. Geophys. Res. Lett., 40, 5798-5802.
- 1337 doi:10.1002/2013GL058051, 2013.

- 1338 Praveen Kumar, B., Vialard J., Lengaigne, M., Murty, V. S. N., and McPhaden, M. J.:
- 1339 TropFlux: Air-Sea Fluxes for the Global Tropical Oceans Description and evaluation,
- 1340 Climate Dynamics, 38, 1521-1543, doi:10.1007/s00382-011-1115-0, 2012.
- Priestley, M. D. K., Ackerley, D., Catto, J. L., Hodges, K. I., McDonald, R. E., and Lee, R.
- 1342 W.: An Overview of the Extratropical Storm Tracks in CMIP6 Historical Simulations. J.
- 1343 *Climate*, **33**, 6315–6343, https://doi.org/10.1175/JCLI-D-19-0928.1, 2020.
- Priestley, M. D. K., Ackerley, D., Catto, J, L., and Hodge, K. I.: Drivers of Biases in the
- 1345 CMIP6 Extratropical Storm Tracks. Part I: Northern Hemisphere. J. Climate, 36, 1451–1467,
- 1346 <u>https://doi.org/10.1175/JCLI-D-20-0976.1</u>, 2023.
- 1347 Prill, F., Reinert, D., Rieger, D., and Zängl, G.: ICON Tutorial -Working with the ICON
- 1348 model. Technical report, Deutscher Wetterdienst,
- https://doi.org/10.5676/DWD_pub/nwv/icon_tutorial2024, 2023.
- 1350 Riddick, T.: Generation of HD parameters files for ICON grids: Technical note, Berichte zur
- 1351 Erdsystemforschung, 245, https://doi.org/10.17617/2.3336390, 2021.
- 1352 Riddick, T., Brovkin, V., Hagemann, S., and Mikolajewicz, U.: Dynamic hydrological
- discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-
- DynamicHD model version 3.0, Geosci. Model Dev., 11, 4291–4316,
- 1355 https://doi.org/10.5194/gmd-11-4291-2018, 2018.
- 1356 Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and
- anthropogenic land cover change in MPI-ESM. J. Advances in Modeling Earth Systems, 5,
- 1358 459–482, https://doi.org/10.1002/jame.20022, 2013.
- Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., and Nabel, J. E. M. S.:
- 1360 JSBACH 3 The land component of the MPI Earth System Model: Documentation of version
- 3.2. Berichte zur Erdsystemforschung, 240, 2021.
- 1362 Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J.,
- Bock, L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B.,
- 1364 Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K.: Earth System Model
- Evaluation Tool (ESMValTool) v2.0 technical overview, Geoscientific Model
- 1366 Development, 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, 2020.

- 1367 Rossby, T. and Flagg, C.: Direct measurement of volume flux in the Faroe-Shetland Channel
- and over the Iceland-Faroe Ridge, Geophys. Res. Lett., 39, L07602,
- 1369 https://doi.org/10.1029/2012GL051269, 2012.
- 1370 Scaife, A.A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., et al.:
- 1371 Skillful long-range prediction of European and North American winters. Geophys. Res. Lett.
- 1372 41, 2514–2519, https://doi.org/10.1002/2014GL059637, 2014.
- 1373 Scaife, A. A., et al., "Long-range prediction and the stratosphere", Atmospheric Chemistry &
- 1374 Physics, vol. 22, no. 4, pp. 2601–2623, 2022. doi:10.5194/acp-22-2601-2022.
- 1375 Schlund, M., Hassler, B., Lauer, A., Andela, B., Jöckel, P., Kazeroni, R., Tomas, S. L.,
- 1376 Medeiros, B., Predoi, V., Sénési, S., Servonnat, J., Stacke, T., Vegas-Regidor, J.,
- 1377 Zimmermann, K., and Eyring, V.: Evaluation of native Earth system model output with
- 1378 ESMValTool v2.6.0, Geoscientific Model Development, 16, 315–333,
- 1379 <u>https://doi.org/10.5194/gmd-16-315-2023</u>, 2023.
- 1380 Schneck, R., Gayler, V., Nabel, J. E. M. S., Raddatz, T., Reick, C. H., and Schnur, R.:
- Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its
- predecessor JSBACHv3.2 of MPI-ESM1.2. Geoscientific Model Development, 15,
- 1383 <u>https://doi.org/10.5194/gmd-15-8581-2022</u>, 2022.
- 1384 Schröder, M., Danne, O., Falk, U., Niedorf, A., Preusker, R., Trent, T., Brockmann, C.,
- 1385 Fischer, J., Hegglin, M., Hollmann, R., Pinnock, S.: A combined high resolution global
- 1386 TCWV product from microwave and near infrared imagers COMBI, Satellite Application
- Facility on Climate Monitoring, https://doi.org/10.5676/EUM_SAF_CM/COMBI/V001,
- 1388 2023.
- 1389 Schulz, J.-P., Dümenil, L., Polcher, J., Schlosser, C. A., and Xue, Y.: Land surface energy
- and moisture fluxes: Comparing three models, *J. Appl. Meteor.*, **37**, 288–307,
- 1391 https://doi.org/10.1175/1520-0450(1998)037<0288:LSEAMF>2.0.CO;2, 1998.
- 1392 Schuster, M., Grieger, J., Richling, A., Schartner, T., Illing, S., Kadow, C., Müller, W. A.,
- 1393 Pohlmann, H., Pfahl, S., and Ulbrich, U.: Improvement in the decadal prediction skill of the
- northern hemisphere extra-tropical winter circulation through increased model resolution.
- 1395 Earth System Dynamics, 10, 901-917, doi:10.5194/esd-2019-18, 2019.
- 1396 Schweiger, A., Lindsay, R., Zhang, J., Steele, M., and Stern, H.: Uncertainty in modeled
- arctic sea ice volume, J. Geophys. Res., doi:10.1029/2011JC007084, 2011.

- 1398 Semtner, A.J.: A model for the thermodynamic growth of sea ice in numerical investigations
- 1399 of climate J.Phys.Oceanogr.6, 379-389, 1976.
- 1400 Smith, D.M., Eade, R., Scaife, A., Caron, L.-P., Danabasoglu, G., DelSole, T., et al.: Robust
- skill of decadal climate predictions. npj Clim Atmos Sci 2, 13, https://doi.org/10.1038/s41612-
- 1402 <u>019-0071-y</u>, 2019.
- 1403 Smith, D.M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., et al.: North
- 1404 Atlantic climate far more predictable than models imply, Nature, 583, 796-800,
- 1405 https://doi:10.1038/s41586-020-2525-0, 2020.
- 1406 Smith, D., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S, Deser, C. Dunstone,
- 1407 N.J., García-Serrano, J., Gastineau, G., Graff, L. S., Hardiman, S.C., He, B., Hermanson, L.,
- 1408 Jung, T., Knight, J., Levine, X., Magnusdottir, G., Manzini, E., Matei, D., Mori, M., Msadek,
- 1409 R., Ortega, P., Peings, Y., Scaife, A.A., Screen, J.A., Seabrook, M., Semmler, T., Sigmond,
- 1410 M., Streffing, J., Sun, L., Walsh, A.: Robust but weak winter atmospheric circulation
- response to future Arctic sea ice loss. Nat. Commun., 13, 727,
- 1412 https://doi.org/10.1038/s41467-022-28283-y., 2022.
- 1413 Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a high-
- 1414 quality Arctic Ocean, J. Climate, 14, 2079-2087, 2001.
- 1415 Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R.,
- 1416 Poulsen, C., Christensen, M., and McGarragh, G.: Cloud_cci Advanced Very High
- 1417 Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology
- of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41–60,
- 1419 https://doi.org/10.5194/essd-12-41-2020, 2020.
- 1420 Woodgate, R. A., Aagard, K., and Weingartner, T. J.: Interannual changes in the Bering Strait
- fluxes of volume, heat, and freshwater between 1991 and 2004, Geophys. Res. Lett., 33,
- 1422 L15609, https://doi.org/10.1029/2006GL026931, 2006.
- 1423 Woodgate, R. A., Weingartner, T., and Lindsa, R.: Observed increases in Bering Strait
- oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the
- 1425 Arctic Ocean water column, Geophys. Res. Lett., 39, L24603,
- 1426 https://doi.org/10.1029/2012GL054092, 2012.
- Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-
- 1428 hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic

https://doi.org/10.5194/egusphere-2025-2473 Preprint. Discussion started: 12 June 2025 © Author(s) 2025. CC BY 4.0 License.

dynamical core, Quarterly Journal of the Royal Meteorological Society, vol. 141, no. 687, pp. 563–579, doi:10.1002/qj.2378, 2015.
Zhang, J. L. and Rothrock, D. A.: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates, Mon. Weather Rev., 131, 845-861, 2003.